Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/8642
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialMathematicsen_US
dc.date.accessioned2013-05-09T11:23:52Z-
dc.date.available2013-05-09T11:23:52Z-
dc.date.issued2013-05-09-
dc.identifier.urihttp://hdl.handle.net/10603/8642-
dc.description.abstractThe non-Newtonian fluids are of vital importance due to their diverse applications in modern technology, industries and bio-mechanics. Thus, the analysis of thermal stability and thermosolutal stability of such fluids like Rivlin-Ericksen fluids, couple-stress fluids, ferromagnetic fluids and micropolar fluids are desirable. We have used the two fundamental hypotheses i.e., continuum hypothesis and Newtonian mechanics throughout our study. In the present thesis, the linearized stability theory and normal mode analysis have been used to study the effects of various important parameters like suspended particles, compressibility, rotation, magnetic field, Hall currents, solute gradient, variable gravity, porous medium, micropolar coefficient, coupling parameter, micropolar heat conduction parameter etc. on various stability problems of hydrodynamic and hydromagnetic systems of non-Newtonian fluids. The thermal stability of a layer of Rivlin-Ericksen fluid heated and soluted from below in porous medium is considered to include the effect of suspended particles in the presence of uniform magnetic field, uniform rotation and variable gravity field. It is found that, for stationary convection, suspended particles have destabilizing effect, solute gradient has stabilizing effect whereas magnetic field, permeability and rotation have stabilizing/destabilizing effect under certain conditions. The principle of exchange of stabilities is satisfied in the absence of magnetic field, rotation and stable solute gradient. The presence of these parameters introduces oscillatory modes into the system.en_US
dc.format.extentxxv, 212p.en_US
dc.languageEnglishen_US
dc.relationNo. of references 241en_US
dc.rightsuniversityen_US
dc.titleSome stability problems of Non-Newtonian Fluidsen_US
dc.creator.researcherMakhija, Sumanen_US
dc.subject.keywordMathematicsen_US
dc.subject.keywordnon-Newtonian fluids-
dc.subject.keywordMagnetohydrodynamics-
dc.description.noteReferences p. 195-211, List of Publications p. 212en_US
dc.contributor.guideAggarwal, Amrish Kumaren_US
dc.publisher.placeNoidaen_US
dc.publisher.universityJaypee Institute of Information Technologyen_US
dc.publisher.institutionDepartment of Mathematicsen_US
dc.date.registeredn.d.en_US
dc.date.completedDecember, 2012en_US
dc.date.awarded2013en_US
dc.format.dimensions--en_US
dc.format.accompanyingmaterialNoneen_US
dc.type.degreePh.D.en_US
dc.source.inflibnetINFLIBNETen_US
Appears in Departments:Department of Mathematics

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File35 kBAdobe PDFView/Open
02_contents.pdf100.18 kBAdobe PDFView/Open
03_certificate & declarations.pdf71.69 kBAdobe PDFView/Open
04_acknowledgements & preface.pdf26.87 kBAdobe PDFView/Open
05_abstract.pdf18.45 kBAdobe PDFView/Open
06_list of symbols.pdf179.41 kBAdobe PDFView/Open
07_list of figures tables & symbols.pdf249.27 kBAdobe PDFView/Open
08_chapter 1.pdf429.72 kBAdobe PDFView/Open
09_chapter 2.pdf1.01 MBAdobe PDFView/Open
10_chapter 3.pdf658.74 kBAdobe PDFView/Open
11_chapter 4.pdf644.34 kBAdobe PDFView/Open
12_chapter 5.pdf820.07 kBAdobe PDFView/Open
13_chapter 6.pdf414.61 kBAdobe PDFView/Open
14_chapter 7.pdf200.73 kBAdobe PDFView/Open
15_references.pdf265.98 kBAdobe PDFView/Open
16_list of publications.pdf147.68 kBAdobe PDFView/Open
17_synopsis.pdf3.58 MBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: