Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/606716
Full metadata record
DC FieldValueLanguage
dc.coverage.spatial
dc.date.accessioned2024-12-13T06:55:10Z-
dc.date.available2024-12-13T06:55:10Z-
dc.identifier.urihttp://hdl.handle.net/10603/606716-
dc.description.abstractIn recent times, a wealth of evidence has emerged, indicating a notable increase in braintumor cases, solidifying its status as the 10th most prevalent type of tumor, affectingboth children and adults. Glioma tumors, assessed pathologically, are divided into theformidable glioblastoma (GBM/HGG) and the less aggressive lower grade glioma(LGG). Glioblastoma, among various brain tumors, stands out as the most lethal andaggressive. Within gliomas, diverse histological subfields include peritumoral edema,a necrotic core, and enhancing/non-enhancing tumor cores. Radiology, specifically magnetic resonance imaging (MRI), plays a vital role in unraveling the phenotypicintricacies and intrinsic heterogeneity of gliomas. Utilizing multimodal MRI scans,such as T1-weighted, contrast-enhanced T1-weighted (T1GD), T2-weighted, andfluidattenuation inversion recovery (FLAIR) images, provides a holistic understanding ofdifferent glioma subfields. The need for precise predictions in overall survival,diagnosis, and treatment planning for glioma patients is met through automated newlinealgorithms embedded in a brain tumor segmentation and detection framework. Thesealgorithms leverage fragmented tumor subfields and radiometric characteristics frommultimodal MRI scans. The thesis introduces a model framework encompassing tumor newline newline
dc.format.extentxxiii,279
dc.languageEnglish
dc.relation
dc.rightsuniversity
dc.titleSurvival prediction in glioblastoma brain tumor using segmentation and Detection with advance computational techniques
dc.title.alternative
dc.creator.researcherRastogi, Deependra
dc.subject.keywordBrain disease treatment equipment industry
dc.subject.keywordComputer Science
dc.subject.keywordComputer Science Artificial Intelligence
dc.subject.keywordEngineering and Technology
dc.subject.keywordGlioblastoma
dc.description.note
dc.contributor.guideJohri, Prashant and Tiwari, Varun
dc.publisher.placeGreater Noida
dc.publisher.universityGalgotias University
dc.publisher.institutionSchool of Computing Science and Engineering
dc.date.registered
dc.date.completed2024
dc.date.awarded2024
dc.format.dimensions
dc.format.accompanyingmaterialDVD
dc.source.universityUniversity
dc.type.degreePh.D.
Appears in Departments:School of Computing Science and Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File185.46 kBAdobe PDFView/Open
02_prelim pages .pdf278.89 kBAdobe PDFView/Open
03_content.pdf197.33 kBAdobe PDFView/Open
04_abstract.pdf137.33 kBAdobe PDFView/Open
05_chapter 1.pdf672.92 kBAdobe PDFView/Open
06_chapter 2.pdf2.56 MBAdobe PDFView/Open
07_chapter 3.pdf638.64 kBAdobe PDFView/Open
08_chapter 4.pdf6.94 MBAdobe PDFView/Open
09_chapter 5.pdf2.27 MBAdobe PDFView/Open
10_chapter 6.pdf30.39 kBAdobe PDFView/Open
11_annexures.pdf196.24 kBAdobe PDFView/Open
80_recommendation.pdf215.41 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).

Altmetric Badge: