Please use this identifier to cite or link to this item:
http://hdl.handle.net/10603/603176
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.coverage.spatial | ||
dc.date.accessioned | 2024-11-27T08:42:16Z | - |
dc.date.available | 2024-11-27T08:42:16Z | - |
dc.identifier.uri | http://hdl.handle.net/10603/603176 | - |
dc.description.abstract | This thesis work investigates the existence and uniqueness of fixed point and approximate newlinefixed point theorems for self-mappings and non-self mappings within the settings of metric newlinespace, b-metric space, and orthogonal b-metric space. We establish fixed point results newlineusing and#945; -admissible mappings in conjunction with newly defined control functions. The newlineresearch also explores the strong convergence of new iterative procedures utilizing and#945; - newlineadmissible contraction mappings, with applications to integral equations. newlineFurther, we examine fixed point theorems involving distinct contractions in b-metric newlinespace and 2-metric space, utilizing generalized convex contraction mappings, and apply newlinethese results to solve integral equations. The study extends to orthogonal b-metric space, newlinewhere fixed point theorems using orthogonal Z -contraction mappings are demonstrated. newlineWe also obtain fixed point theorems for self-mappings using the altering distance function newlineunder convincing contraction conditions in orthogonal metric space, introducing a novel newlineconcept newline | |
dc.format.extent | ||
dc.language | English | |
dc.relation | ||
dc.rights | university | |
dc.title | Studies on Fixed Point Theorems in Different Types of Contraction Mappings | |
dc.title.alternative | ||
dc.creator.researcher | Gunasekaran, N | |
dc.subject.keyword | Mathematics | |
dc.subject.keyword | Physical Sciences | |
dc.description.note | ||
dc.contributor.guide | Arul Joseph, G | |
dc.publisher.place | Kattankulathur | |
dc.publisher.university | SRM Institute of Science and Technology | |
dc.publisher.institution | Department of Mathematics | |
dc.date.registered | ||
dc.date.completed | 2024 | |
dc.date.awarded | 2024 | |
dc.format.dimensions | ||
dc.format.accompanyingmaterial | DVD | |
dc.source.university | University | |
dc.type.degree | Ph.D. | |
Appears in Departments: | Department of Mathematics |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
01_title page.pdf | Attached File | 290.42 kB | Adobe PDF | View/Open |
02_preliminary page.pdf | 323.07 kB | Adobe PDF | View/Open | |
03_content.pdf | 272.7 kB | Adobe PDF | View/Open | |
04_abstract.pdf | 217.34 kB | Adobe PDF | View/Open | |
05_chapter 1.pdf | 237.83 kB | Adobe PDF | View/Open | |
06_chapter 2.pdf | 416.74 kB | Adobe PDF | View/Open | |
07_chapter 3.pdf | 406.74 kB | Adobe PDF | View/Open | |
08_chapter 4.pdf | 407.11 kB | Adobe PDF | View/Open | |
09_chapter 5.pdf | 398.02 kB | Adobe PDF | View/Open | |
10_chapter 6.pdf | 403.77 kB | Adobe PDF | View/Open | |
11_chapter 7.pdf | 221.25 kB | Adobe PDF | View/Open | |
12_annexures.pdf | 258.07 kB | Adobe PDF | View/Open | |
80_recommendation.pdf | 377.89 kB | Adobe PDF | View/Open |
Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).
Altmetric Badge: