Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/601223
Full metadata record
DC FieldValueLanguage
dc.coverage.spatial
dc.date.accessioned2024-11-14T07:10:13Z-
dc.date.available2024-11-14T07:10:13Z-
dc.identifier.urihttp://hdl.handle.net/10603/601223-
dc.description.abstractRough Set Theory provides a robust mathematical framework for handling uncertainties newlineand imprecision inherent in knowledge bases. This work introduces a novel methodology newlinefor constructing Rough Graphs through the utilization of Rough Membership Functions. newlineExtensive mathematical investigations have been conducted to analyze various facets of newlinethese Rough Graphs. The construction of Rough Graphs is explored through diverse newlineapproaches, including set approximations, neighborhood formulations, and membership newlinefunction definitions. A comprehensive examination of Rough Graphs is undertaken, newlineencompassing their development via rough approximations, distinct forms of neighborhoods, newlineand membership function characterizations. Furthermore, the concept of Rougn Metric is newlineintroduced for Rough Graphs, enabling the computation of reducts, which are essential for newlineattribute reduction and feature selection. The proposed Rough Metric Dimension offers a newlinepowerful tool for dimensionality reduction in data analysis tasks. To augment the performance newlineand accuracy of dimensionality reduction, the Rough Metric Dimension is hybridized with newlinethe Linear Discriminant Analysis (LDA) technique. This integrated approach leverages the newlinestrengths of both methodologies, yielding remarkable results surpassing existing techniques newlinein terms of dimensionality reduction capabilities. The research concludes that the novel newlineconcept of Rough Metric Dimension, coupled with the LDA technique, presents a compelling newlineand effective solution for handling uncertainties, imprecision, and dimensionality reduction newlinechallenges in knowledge-based systems and data analysis applications newline
dc.format.extent
dc.languageEnglish
dc.relation
dc.rightsuniversity
dc.titleExploring Metric Dimension of Rough Graphs in Dimensionality Reduction
dc.title.alternative
dc.creator.researcherAruna Devi, R
dc.subject.keywordMathematics
dc.subject.keywordPhysical Sciences
dc.description.note
dc.contributor.guideAnitha, K
dc.publisher.placeKattankulathur
dc.publisher.universitySRM Institute of Science and Technology
dc.publisher.institutionDepartment of Mathematics
dc.date.registered
dc.date.completed2024
dc.date.awarded2024
dc.format.dimensions
dc.format.accompanyingmaterialDVD
dc.source.universityUniversity
dc.type.degreePh.D.
Appears in Departments:Department of Mathematics

Files in This Item:
File Description SizeFormat 
01_title page.pdfAttached File218.2 kBAdobe PDFView/Open
02_preliminary page.pdf345.07 kBAdobe PDFView/Open
03_content.pdf250.77 kBAdobe PDFView/Open
04_abstract.pdf177.69 kBAdobe PDFView/Open
05_chapter 1.pdf937.77 kBAdobe PDFView/Open
06_chapter 2.pdf509.33 kBAdobe PDFView/Open
07_chapter 3.pdf777.22 kBAdobe PDFView/Open
08_chapter 4.pdf1.35 MBAdobe PDFView/Open
09_chapter 5.pdf702.11 kBAdobe PDFView/Open
10_chapter 6.pdf591.13 kBAdobe PDFView/Open
11_chapter 7.pdf180.1 kBAdobe PDFView/Open
12_annexures.pdf238.15 kBAdobe PDFView/Open
80_recommendation.pdf225.95 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: