Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/599051
Full metadata record
DC FieldValueLanguage
dc.coverage.spatial
dc.date.accessioned2024-11-04T05:21:42Z-
dc.date.available2024-11-04T05:21:42Z-
dc.identifier.urihttp://hdl.handle.net/10603/599051-
dc.description.abstractIn this thesis, identification and control of two types of distillation columns are newlinedescribed. (1) Binary distillation column (2) Heat integrated distillation column newline(HIDC). Both binary distillation column and HIDC are highly nonlinear, modelling newline newlineof such system are challenging in process industry. Intelligent techniques such as ar- newlinetificial neural network (ANN), fuzzy systems, adaptive neuro-fuzzy inference system, newline newlinesupport vector regression e.t.c, are well suited for nonlinear mapping. If the process newline newlineinput-output data are available, these intelligent techniques can be used to approxi- newlinemate output values for the given inputs. Intelligent methods can also be employed newline newlineas nonlinear controller for nonlinear systems such as binary distillation column and newlineHIDC. newlineIn a binary distillation column, identification or data driven modeling has been newlinecarried out using the nonparametric method such as artificial neural networks and newlinefuzzy systems. But identification of systems using these methods has a drawback of newlinetrapping at local minimal points. To avoid the drawback of trapping, meta heuristic newlineoptimization algorithms can be used. So, in our works, neural network and fuzzy newline newlinesystems optimized using meta heuristic algorithms are used. Since the real distil- newlinelation column is dynamic, NARX (nonlinear autoregressive with exogenous input) newline newlinestructures are used for identification. Data needed for identification are collected newlinefrom HYSYS chemical simulation software. 1000 samples of data are collected from newlineHYSYS. 750 samples of data are used for training and remaining 250 samples of newlinedata are employed for validation of proposed models. newline
dc.format.extent
dc.languageEnglish
dc.relation
dc.rightsuniversity
dc.titleIdentification and control of distillation columns using optimized intelligent techniques
dc.title.alternative
dc.creator.researcherE, Abdul Jaleel
dc.subject.keywordEngineering
dc.subject.keywordEngineering and Technology
dc.subject.keywordEngineering Chemical
dc.description.note
dc.contributor.guideK, Aparna
dc.publisher.placeCalicut
dc.publisher.universityNational Institute of Technology Calicut
dc.publisher.institutionCHEMICAL ENGINEERING
dc.date.registered2014
dc.date.completed2018
dc.date.awarded2018
dc.format.dimensions
dc.format.accompanyingmaterialDVD
dc.source.universityUniversity
dc.type.degreePh.D.
Appears in Departments:CHEMICAL ENGINEERING

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File104.7 kBAdobe PDFView/Open
02_prelim pages.pdf148.76 kBAdobe PDFView/Open
03_content.pdf48.42 kBAdobe PDFView/Open
04_abstract.pdf50.33 kBAdobe PDFView/Open
05_chapter 1.pdf80.93 kBAdobe PDFView/Open
06_chapter 2.pdf1.96 MBAdobe PDFView/Open
07_chapter 3.pdf10.23 MBAdobe PDFView/Open
08_chapter 4.pdf7.52 MBAdobe PDFView/Open
09_chapter 5.pdf1.96 MBAdobe PDFView/Open
10_chapter 6.pdf2.78 MBAdobe PDFView/Open
11_chapter 7.pdf54.22 kBAdobe PDFView/Open
12_annexures.pdf143.54 kBAdobe PDFView/Open
80_recommendation.pdf115.59 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: