Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/597010
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialDeveloping optimal solutions for the data management challenges in social internet of things
dc.date.accessioned2024-10-22T11:46:45Z-
dc.date.available2024-10-22T11:46:45Z-
dc.identifier.urihttp://hdl.handle.net/10603/597010-
dc.description.abstractThe convergence of the Social Internet of Things (SIoT) and Big newlineData has presented a significant challenge in effectively classifying and newlineanalyzing massive amounts of generated electronic data. While several newlinemachine learning techniques are employed to extract useful information from newlinebig data, they face challenges such as high training time, memory volume, newlineand computation costs in performing the classification task. This thesis newlineproposes a comprehensive approach that incorporates two innovative newlinemethods: the Fuzzy Optimized Deep Convolutional Neural Network newline(FDCNN) and the Marine Predator-based Deep Recurrent Neural Network newline(MDRNN) to address these challenges and enhance classification accuracy newlinewhile reducing energy consumption. newlineThe FDCNN method integrates a deep convolutional neural newlinenetwork with the fuzzy-based Remora Optimization (BRO) algorithm for newlineSIoT big data classification. This combination allows for effective feature newlineselection and improved performance. On the other hand, the MDRNN newlinemethod leverages deep recurrent neural networks and the marine predator newlinealgorithm to classify SIoT big data. An adaptive filter is employed to select a newlinesuitable subset of data, eliminating unwanted noise and redundant newlineinformation. The Hadoop MapReduce framework is used to reduce the newlinedimension of the data, improving the performance of the proposed method. newlineThe modified relief technique is also utilized for optimal feature/attribute newlineselection, thereby enhancing classification accuracy. newline
dc.format.extentxviii,161p.
dc.languageEnglish
dc.relationp.149-160
dc.rightsuniversity
dc.titleDeveloping optimal solutions for the data management challenges in social internet of things
dc.title.alternative
dc.creator.researcherShaji B
dc.subject.keywordData Management
dc.subject.keywordGlobal Positioning System
dc.subject.keywordSocial Internet of Things
dc.description.note
dc.contributor.guideLal Raja Singh
dc.publisher.placeChennai
dc.publisher.universityAnna University
dc.publisher.institutionFaculty of Information and Communication Engineering
dc.date.registered
dc.date.completed2024
dc.date.awarded2024
dc.format.dimensions21cm
dc.format.accompanyingmaterialNone
dc.source.universityUniversity
dc.type.degreePh.D.
Appears in Departments:Faculty of Information and Communication Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File296.01 kBAdobe PDFView/Open
02_prelim_pages.pdf3.24 MBAdobe PDFView/Open
03_contents.pdf128.74 kBAdobe PDFView/Open
04_abstracts.pdf166.67 kBAdobe PDFView/Open
05_chapter1.pdf544.99 kBAdobe PDFView/Open
06_chapter2.pdf261.5 kBAdobe PDFView/Open
07_chapter3.pdf217.92 kBAdobe PDFView/Open
08_chapter4.pdf1.21 MBAdobe PDFView/Open
09_chapter5.pdf1.12 MBAdobe PDFView/Open
10_chapter6.pdf2.34 MBAdobe PDFView/Open
11_chapter7.pdf99.15 kBAdobe PDFView/Open
12_annexures.pdf136.1 kBAdobe PDFView/Open
80_recommendation.pdf66.47 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: