Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/593165
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialQuality enhancement for hevc compressed videos
dc.date.accessioned2024-10-01T11:31:08Z-
dc.date.available2024-10-01T11:31:08Z-
dc.identifier.urihttp://hdl.handle.net/10603/593165-
dc.description.abstractThe most frequent form of internet traffic is video. Video compression is essential for offering high-quality image/video services. Video coding is one of the main technologies utilized in video applications. High Efficiency Video Coding (HEVC) enables 50% compression while preserving comparable perceived image quality compared to the previous video coding standard H.264/AVC. Complex artifacts are introduced by high compression rates and enhancing HEVC compressed videos is crucial. In-Loop Filtering (ILP) is a technique used by HEVC to greatly minimize artifacts and enhance the quality of the reconstructed video. Deblocking Filter (DBF) and Sample Adaptive Offset (SAO) filters are used in HEVC to minimize artifacts. It is possible to improve the visual quality of decoded images by using deep learning techniques. The quality of HEVC decoded video can be improved using a variety of models, including Deep Convolutional Neural Networks (DCNN), Generative Adversarial Networks (GAN), and U-Net architecture. Among the many applications of deep learning techniques for video quality enhancement, the detection of moving objects is one of the most important. newline
dc.format.extentxix,140p.
dc.languageEnglish
dc.relationp.124-139
dc.rightsuniversity
dc.titleQuality enhancement for hevc compressed videos
dc.title.alternative
dc.creator.researcherSheeba, G
dc.subject.keywordcompressed videos
dc.subject.keywordEngineering
dc.subject.keywordEngineering and Technology
dc.subject.keywordEngineering Electrical and Electronic
dc.subject.keywordinternet traffic
dc.description.note
dc.contributor.guideMaheswari, M
dc.publisher.placeChennai
dc.publisher.universityAnna University
dc.publisher.institutionFaculty of Information and Communication Engineering
dc.date.registered
dc.date.completed2024
dc.date.awarded2024
dc.format.dimensions21cm
dc.format.accompanyingmaterialNone
dc.source.universityUniversity
dc.type.degreePh.D.
Appears in Departments:Faculty of Information and Communication Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File25.53 kBAdobe PDFView/Open
02_prelim_pages.pdf1.96 MBAdobe PDFView/Open
03_contents.pdf19.57 kBAdobe PDFView/Open
04_abstract.pdf12.02 kBAdobe PDFView/Open
05_chapter1.pdf179.12 kBAdobe PDFView/Open
06_chapter2.pdf150.69 kBAdobe PDFView/Open
07_chapter3.pdf1.65 MBAdobe PDFView/Open
08_chapter4.pdf1.33 MBAdobe PDFView/Open
09_chapter5.pdf635.3 kBAdobe PDFView/Open
10_annexures.pdf141.7 kBAdobe PDFView/Open
80_recommendation.pdf64.37 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: