Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/592578
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialFeature extraction from sentinel 2 imagery using deep learning approach for urban land use land cover classification
dc.date.accessioned2024-09-30T06:12:32Z-
dc.date.available2024-09-30T06:12:32Z-
dc.identifier.urihttp://hdl.handle.net/10603/592578-
dc.description.abstractIn satellite remote sensing, extraction of features from the imagery newlinefor the urban environment is challenging due to the heterogeneous mix of newlinevarious features. Researchers across the world have been attempting newlinecontinuously to improve satellite image classification accuracy, with an aim to newlinefacilitate better and sustainable development plans. Land Use / Land Cover newline(LU/LC) classification using satellite remote sensing data is quite a challenging newlineprocedure due to the spectral and geographical complexity of the imagery. To newlineaddress this issue, the emergence of Deep Learning (DL) in the advancement newlineof machine learning can pave the path towards processing, analyzing and newlinemanipulating geospatial sensor data. This research aims to frame a hybrid newlinemethodology that can extract the urban features such as settlement, industry, newlinewaterbody and green cover (tree) more precisely for LU/LC classification. newlineIn order to implement this methodology, the selected study area is newlineChennai city with many urban features between 12°58 00quotN to 13°9 00quotN, and newline80°8 00quotE to 80°18 00quotE. An image of Sentinel-2 Multispectral Instrument newline(MSI) acquired on March 22, 2018, with a spatial resolution of 10 meters of 4 newlinemultispectral bands (blue, green, red and near-infrared) and radiometric newlineresolution of 12 bits was used for spectral classifications using Maximum newlineLikelihood Classifier (MLC) and Deep Learning (DL) methods. newline
dc.format.extentxv,169p.
dc.languageEnglish
dc.relationp.138-168
dc.rightsuniversity
dc.titleFeature extraction from sentinel 2 imagery using deep learning approach for urban land use land cover classification
dc.title.alternative
dc.creator.researcherVenkatesan C
dc.subject.keywordDeep Learning
dc.subject.keywordMaximum Likelihood Classifier
dc.subject.keywordSatellite Remote Sensing
dc.description.note
dc.contributor.guideMurugasan R
dc.publisher.placeChennai
dc.publisher.universityAnna University
dc.publisher.institutionFaculty of Civil Engineering
dc.date.registered
dc.date.completed2024
dc.date.awarded2024
dc.format.dimensions21cm
dc.format.accompanyingmaterialNone
dc.source.universityUniversity
dc.type.degreePh.D.
Appears in Departments:Faculty of Civil Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File45.63 kBAdobe PDFView/Open
02_prelim_pages.pdf466.7 kBAdobe PDFView/Open
03_contents.pdf35.7 kBAdobe PDFView/Open
04_abstracts.pdf88.01 kBAdobe PDFView/Open
05_chapter1.pdf249.61 kBAdobe PDFView/Open
06_chapter2.pdf175.35 kBAdobe PDFView/Open
07_chapter3.pdf1.01 MBAdobe PDFView/Open
08_chapter4.pdf3.12 MBAdobe PDFView/Open
09_chapter5.pdf1.89 MBAdobe PDFView/Open
10_chapter6.pdf1.26 MBAdobe PDFView/Open
11_annexures.pdf389.25 kBAdobe PDFView/Open
80_recommendation.pdf1.2 MBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: