Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/592484
Full metadata record
DC FieldValueLanguage
dc.coverage.spatial
dc.date.accessioned2024-09-30T05:21:24Z-
dc.date.available2024-09-30T05:21:24Z-
dc.identifier.urihttp://hdl.handle.net/10603/592484-
dc.description.abstractThe introduction of Artificial Intelligence (AI) and Machine Learning (ML) technologies has newline been causing a revolutionary change in the field of mental health, especially in prenatal and newline postpartum depression prediction. It enables healthcare professionals to make timely, informed newline decisions, which in turn improves mothers well-being and contribute to family dynamics pos newlineitively, and improvements in infant development and the mother-infant bond. newline During delivery (prenatal) and postpartum (1-6 weeks) after childbirth are two of the most newline critical stages where psychological disturbance remains undiagnosed, which also leads to the newline main cause of late-stage depression. This thesis investigates, develops, and proposes a trian newlinegulation model for prenatal and postnatal mental depression prediction. Organized interviews newline were used to gather data from women who were admitted for childbirth at SRM Medical Col newlinepsychological questionnaire responses, and social media posts make up the dataset newline
dc.format.extent
dc.languageEnglish
dc.relation
dc.rightsuniversity
dc.titleEnhanced AI Based Methodologies for Detection of Prenatal Postnatal Depression in Women
dc.title.alternative
dc.creator.researcherAbinaya gopalkrishnan
dc.subject.keywordEngineering
dc.subject.keywordEngineering and Technology
dc.subject.keywordEngineering Electrical and Electronic
dc.description.note
dc.contributor.guideRevathi Venkataraman
dc.publisher.placeKattankulathur
dc.publisher.universitySRM Institute of Science and Technology
dc.publisher.institutionDepartment of Electronics and Communication Engineering
dc.date.registered
dc.date.completed2024
dc.date.awarded2024
dc.format.dimensions
dc.format.accompanyingmaterialDVD
dc.source.universityUniversity
dc.type.degreePh.D.
Appears in Departments:Department of Electronics and Communication Engineering

Files in This Item:
File Description SizeFormat 
01_title page.pdfAttached File399.13 kBAdobe PDFView/Open
02_preliminary page.pdf340.86 kBAdobe PDFView/Open
03_content.pdf258.93 kBAdobe PDFView/Open
04_abstract.pdf230.04 kBAdobe PDFView/Open
05_chapter 1.pdf1.14 MBAdobe PDFView/Open
06_chapter 2.pdf727.75 kBAdobe PDFView/Open
07_chapter 3.pdf1.23 MBAdobe PDFView/Open
08_chapter 4.pdf1.37 MBAdobe PDFView/Open
09_chapter 5.pdf1.22 MBAdobe PDFView/Open
10_chapter 6.pdf327.69 kBAdobe PDFView/Open
11_annexures.pdf583.08 kBAdobe PDFView/Open
80_recommendation.pdf725.34 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: