Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/576358
Full metadata record
DC FieldValueLanguage
dc.coverage.spatial
dc.date.accessioned2024-07-11T09:45:08Z-
dc.date.available2024-07-11T09:45:08Z-
dc.identifier.urihttp://hdl.handle.net/10603/576358-
dc.description.abstractMonitoring water quality is of great importance due to its close connection newlineto both human health and the vitality of ecosystems. The efficient and effective water newlineresources management has posed a significant difficulty, particularly considering the newlinemounting demands stemming from population expansion, industrial development, and newlinealterations in climatic patterns. Historically, conventional techniques for monitoring newlinewater quality have depended on laborious sampling and analysis conducted in a newlinelaboratory setting. This methodology has the potential to incur significant temporal and newlinefinancial costs, and may also be restricted by spatial constraints. Remote sensing newlinemethodologies offer significant insights for water quality surveillance at a broad scope. newlineThe precision and timeliness of monitoring water quality have been significantly newlineimproved by applying deep-learning models to data obtained through Remote Sensing newline
dc.format.extent
dc.languageEnglish
dc.relation
dc.rightsuniversity
dc.titleSpectral Based Modeling and Spatiotemporal Monitoring of Physical and Chemical Water Quality Parameters of Inland Lakes an Integrated Remote Sensing and Deep Learning Techniques
dc.title.alternative
dc.creator.researcherRamaraj, M
dc.subject.keywordEngineering
dc.subject.keywordEngineering and Technology
dc.subject.keywordEngineering Civil
dc.description.note
dc.contributor.guideSivakumar, R
dc.publisher.placeKattankulathur
dc.publisher.universitySRM Institute of Science and Technology
dc.publisher.institutionDepartment of Civil Engineering
dc.date.registered
dc.date.completed2024
dc.date.awarded2024
dc.format.dimensions
dc.format.accompanyingmaterialDVD
dc.source.universityUniversity
dc.type.degreePh.D.
Appears in Departments:Department of Civil Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File216.07 kBAdobe PDFView/Open
02_preliminary page.pdf.pdf546.21 kBAdobe PDFView/Open
03_content.pdf437.14 kBAdobe PDFView/Open
04_abstract.pdf217.19 kBAdobe PDFView/Open
05_chapter 1.pdf448.6 kBAdobe PDFView/Open
06_chapter 2.pdf393.73 kBAdobe PDFView/Open
07_chapter 3.pdf1.57 MBAdobe PDFView/Open
08_chapter 4.pdf997.7 kBAdobe PDFView/Open
09_chapter 5.pdf2.74 MBAdobe PDFView/Open
10_chapter 6.pdf5.03 MBAdobe PDFView/Open
11_chapter 7.pdf2.92 MBAdobe PDFView/Open
12_chapter 8.pdf238.29 kBAdobe PDFView/Open
13_annexures.pdf415.8 kBAdobe PDFView/Open
80_recommendation.pdf320.91 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: