Please use this identifier to cite or link to this item:
http://hdl.handle.net/10603/55926
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.coverage.spatial | Integrated framework for Visualized exploratory data Clustering and pattern extraction in Mixed data | en_US |
dc.date.accessioned | 2015-10-21T15:12:09Z | - |
dc.date.available | 2015-10-21T15:12:09Z | - |
dc.date.issued | 2015-10-21 | - |
dc.identifier.uri | http://hdl.handle.net/10603/55926 | - |
dc.description.abstract | Data mining is a form of analyzing the data which relates the newlinetechniques from fields like statistics machine learning databases artificial newlineintelligence etc Clustering is one of the most important data mining newlinetechniques in which cluster of objects are grouped based on their similarity newlineClustering is the process of accumulating the data records into considerable newlinesubclasses clusters in a way which enhances the relationship within clusters newlineand reduces the similarity among two different clusters The main aim of the newlineclustering is to offer a collection of similar records Data clustering is a newlinecommon methodology used in various fields such as pattern recognition newlineimage analysis and bioinformatics etc newlineIn data analysis clustering and extracting patterns from the data are newlinethe vital process involved in it There are many techniques available for newlinehomogenous data clustering and only very few techniques exist for clustering newlinemixed data items This wants clustering technique for classification of mixed newlinedata Integration of clustering and pattern extraction is natural and necessary newlinetowards a complete and convenient data analysis environment newline newline | en_US |
dc.format.extent | xviii, 167p. | en_US |
dc.language | English | en_US |
dc.relation | p154-166. | en_US |
dc.rights | university | en_US |
dc.title | Integrated framework for Visualized exploratory data Clustering and pattern extraction in Mixed data | en_US |
dc.title.alternative | en_US | |
dc.creator.researcher | Hari prasad D | en_US |
dc.subject.keyword | Artificial intelligence | en_US |
dc.subject.keyword | Data clustering | en_US |
dc.subject.keyword | Data mining | en_US |
dc.description.note | reference p154-166. | en_US |
dc.contributor.guide | Punithavalli M | en_US |
dc.publisher.place | Chennai | en_US |
dc.publisher.university | Anna University | en_US |
dc.publisher.institution | Faculty of Science and Humanities | en_US |
dc.date.registered | n.d, | en_US |
dc.date.completed | 01/05/2014 | en_US |
dc.date.awarded | 30/05/2014 | en_US |
dc.format.dimensions | 23cm. | en_US |
dc.format.accompanyingmaterial | None | en_US |
dc.source.university | University | en_US |
dc.type.degree | Ph.D. | en_US |
Appears in Departments: | Faculty of Science and Humanities |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
01_title.pdf | Attached File | 128.13 kB | Adobe PDF | View/Open |
02_certificate.pdf | 1.48 MB | Adobe PDF | View/Open | |
03_abstract.pdf | 110.29 kB | Adobe PDF | View/Open | |
04_acknowledgement.pdf | 534.03 kB | Adobe PDF | View/Open | |
05_content.pdf | 189.81 kB | Adobe PDF | View/Open | |
06_chapter1.pdf | 524.06 kB | Adobe PDF | View/Open | |
07_chapter2.pdf | 267.67 kB | Adobe PDF | View/Open | |
08_chapter3.pdf | 886.2 kB | Adobe PDF | View/Open | |
09_chapter4.pdf | 642.03 kB | Adobe PDF | View/Open | |
10_chapter5.pdf | 590.2 kB | Adobe PDF | View/Open | |
11_chapter6.pdf | 360.25 kB | Adobe PDF | View/Open | |
12_chapter7.pdf | 180.48 kB | Adobe PDF | View/Open | |
13_reference.pdf | 775.67 kB | Adobe PDF | View/Open | |
14_publication.pdf | 171.94 kB | Adobe PDF | View/Open |
Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).
Altmetric Badge: