Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/55926
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialIntegrated framework for Visualized exploratory data Clustering and pattern extraction in Mixed dataen_US
dc.date.accessioned2015-10-21T15:12:09Z-
dc.date.available2015-10-21T15:12:09Z-
dc.date.issued2015-10-21-
dc.identifier.urihttp://hdl.handle.net/10603/55926-
dc.description.abstractData mining is a form of analyzing the data which relates the newlinetechniques from fields like statistics machine learning databases artificial newlineintelligence etc Clustering is one of the most important data mining newlinetechniques in which cluster of objects are grouped based on their similarity newlineClustering is the process of accumulating the data records into considerable newlinesubclasses clusters in a way which enhances the relationship within clusters newlineand reduces the similarity among two different clusters The main aim of the newlineclustering is to offer a collection of similar records Data clustering is a newlinecommon methodology used in various fields such as pattern recognition newlineimage analysis and bioinformatics etc newlineIn data analysis clustering and extracting patterns from the data are newlinethe vital process involved in it There are many techniques available for newlinehomogenous data clustering and only very few techniques exist for clustering newlinemixed data items This wants clustering technique for classification of mixed newlinedata Integration of clustering and pattern extraction is natural and necessary newlinetowards a complete and convenient data analysis environment newline newlineen_US
dc.format.extentxviii, 167p.en_US
dc.languageEnglishen_US
dc.relationp154-166.en_US
dc.rightsuniversityen_US
dc.titleIntegrated framework for Visualized exploratory data Clustering and pattern extraction in Mixed dataen_US
dc.title.alternativeen_US
dc.creator.researcherHari prasad Den_US
dc.subject.keywordArtificial intelligenceen_US
dc.subject.keywordData clusteringen_US
dc.subject.keywordData miningen_US
dc.description.notereference p154-166.en_US
dc.contributor.guidePunithavalli Men_US
dc.publisher.placeChennaien_US
dc.publisher.universityAnna Universityen_US
dc.publisher.institutionFaculty of Science and Humanitiesen_US
dc.date.registeredn.d,en_US
dc.date.completed01/05/2014en_US
dc.date.awarded30/05/2014en_US
dc.format.dimensions23cm.en_US
dc.format.accompanyingmaterialNoneen_US
dc.source.universityUniversityen_US
dc.type.degreePh.D.en_US
Appears in Departments:Faculty of Science and Humanities

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File128.13 kBAdobe PDFView/Open
02_certificate.pdf1.48 MBAdobe PDFView/Open
03_abstract.pdf110.29 kBAdobe PDFView/Open
04_acknowledgement.pdf534.03 kBAdobe PDFView/Open
05_content.pdf189.81 kBAdobe PDFView/Open
06_chapter1.pdf524.06 kBAdobe PDFView/Open
07_chapter2.pdf267.67 kBAdobe PDFView/Open
08_chapter3.pdf886.2 kBAdobe PDFView/Open
09_chapter4.pdf642.03 kBAdobe PDFView/Open
10_chapter5.pdf590.2 kBAdobe PDFView/Open
11_chapter6.pdf360.25 kBAdobe PDFView/Open
12_chapter7.pdf180.48 kBAdobe PDFView/Open
13_reference.pdf775.67 kBAdobe PDFView/Open
14_publication.pdf171.94 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: