Please use this identifier to cite or link to this item:
http://hdl.handle.net/10603/547624
Title: | Investigation of accurate consumer electricity bill prediction using enhanced long short term memory |
Researcher: | Raghupathi, C |
Guide(s): | Prakash, R |
Keywords: | electricity demand energy consumption Engineering Engineering and Technology Engineering Electrical and Electronic technological breakthroughs |
University: | Anna University |
Completed Date: | 2022 |
Pagination: | xiii,124p. |
URI: | http://hdl.handle.net/10603/547624 |
Appears in Departments: | Faculty of Electrical Engineering |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
01_title.pdf | Attached File | 24.04 kB | Adobe PDF | View/Open |
02_prelim pages.pdf | 3.03 MB | Adobe PDF | View/Open | |
03_content.pdf | 117.29 kB | Adobe PDF | View/Open | |
04_abstract.pdf | 108.57 kB | Adobe PDF | View/Open | |
05_chapter1.pdf | 1.15 MB | Adobe PDF | View/Open | |
06_chapter2.pdf | 302.56 kB | Adobe PDF | View/Open | |
07_chapter3.pdf | 920.89 kB | Adobe PDF | View/Open | |
08_chapter4.pdf | 271.61 kB | Adobe PDF | View/Open | |
09_annexures.pdf | 140.16 kB | Adobe PDF | View/Open | |
80_recommendation.pdf | 72.33 kB | Adobe PDF | View/Open |
Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).
Altmetric Badge: