Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/533012
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialMathematics
dc.date.accessioned2023-12-26T05:35:14Z-
dc.date.available2023-12-26T05:35:14Z-
dc.identifier.urihttp://hdl.handle.net/10603/533012-
dc.description.abstractIn the year 1970, S. Willard introduced the General topology and in 1982, the -closed mappings. Let A be a subset of a topological space (X, and#120591; ), a pointand#61689;H. Z. Hdeib studied p in X is called a condensation point of A if for each open set B containing p, B and#8745; A is uncountable. A subset A of a topological space (X, and#964;) is called and#969;-closed if it contains all its condensation points. The complement of an and#969;-closed set is called and#969;-open. General topologists developed both the notions parallelly during the last two decades. But our interest is to investigate the results and the recent concepts that are related to and#969;-open sets and and#969;-closed sets in the sense of Hdeib. In the year 2010, E. Ekici and S. Jafari, used the interior and closure operators to define the near and closer relations in topology. Following this Chirelekha, in the year 2021, had recently investigated some new types near and closer relations in topology and bitopology. Quite recently, Samer Al-Ghour et.al.(2022) and Pmar Sasma z et.al.(2021) contributed their investigations on and#969;-open sets in the settings of theta topology and delta topology respectively. newline
dc.format.extent168p.
dc.languageEnglish
dc.relation31 Nos.
dc.rightsuniversity
dc.titleInvestigation of New Notions in Topological Spaces
dc.title.alternative-
dc.creator.researcherUthra, K
dc.subject.keywordMathematics
dc.subject.keywordMathematics Applied
dc.subject.keywordPhysical Sciences
dc.description.noteBibliography p.169-172
dc.contributor.guideBhuvaneswari, K
dc.publisher.placeKodaikanal
dc.publisher.universityMother Teresa Womens University
dc.publisher.institutionDepartment of Mathematics
dc.date.registered2016
dc.date.completed2023
dc.date.awarded2023
dc.format.dimensionsA4
dc.format.accompanyingmaterialDVD
dc.source.universityUniversity
dc.type.degreePh.D.
Appears in Departments:Department of Mathematics

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File99.18 kBAdobe PDFView/Open
02_certificate.pdf209.77 kBAdobe PDFView/Open
03_abstract.pdf133.52 kBAdobe PDFView/Open
04_declaration.pdf75.44 kBAdobe PDFView/Open
05_acknowledgement.pdf62.48 kBAdobe PDFView/Open
06_contents.pdf200.95 kBAdobe PDFView/Open
07_list of figures.pdf107.36 kBAdobe PDFView/Open
08_abbreviations.pdf70.97 kBAdobe PDFView/Open
09_chapter 1.pdf249.3 kBAdobe PDFView/Open
10_chapter 2.pdf297.85 kBAdobe PDFView/Open
11_chapter 3.pdf329.55 kBAdobe PDFView/Open
12_chapter 4.pdf366.18 kBAdobe PDFView/Open
13_chapter 5.pdf224.24 kBAdobe PDFView/Open
14_chapter 6.pdf207.77 kBAdobe PDFView/Open
15_chapter 7.pdf206.02 kBAdobe PDFView/Open
16_chapter 8.pdf326.43 kBAdobe PDFView/Open
17_conclusion.pdf60.74 kBAdobe PDFView/Open
18_bibliography.pdf51.64 kBAdobe PDFView/Open
80_recommendation.pdf312.87 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: