Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/528732
Full metadata record
DC FieldValueLanguage
dc.coverage.spatial
dc.date.accessioned2023-12-07T06:40:50Z-
dc.date.available2023-12-07T06:40:50Z-
dc.identifier.urihttp://hdl.handle.net/10603/528732-
dc.description.abstractThe increasing popularity of surveillance systems has resulted in a massive impact of newlinesurveillance footage, which requires manual analysis to extract meaningful insights. newlineThe proposed framework aims to address this challenge by automatically generating a newlineconcise summary of the crowd video. The framework utilizes deep learning methods to newlineextract relevant features and apply clustering algorithms to group similar events. newlineThe proposed research work includes three different approaches to video analysis and newlinemanagement. The first research proposes a novel approach for automatic video newlinesummarization using crowded videos. The proposed framework combines Bayesian newlinefuzzy clustering and deep learning techniques to extract the most important events from newlinethe video while minimizing information loss. The system utilizes deep learning to newlineextract salient features and fuzzy clustering to group similar events. newline
dc.format.extentxi+101p,
dc.languageEnglish
dc.relation
dc.rightsself
dc.titleA Robust Framework for Automatic Crowd Video Summarization Using Deep Learning Methodology
dc.title.alternative
dc.creator.researcherSingh, Anshy
dc.subject.keywordComputer Science
dc.subject.keywordComputer Science Artificial Intelligence
dc.subject.keywordEngineering and Technology
dc.description.note
dc.contributor.guideKumar, Manoj
dc.publisher.placeMathura
dc.publisher.universityGLA University
dc.publisher.institutionDepartment of Computer Engineering and Applications
dc.date.registered2019
dc.date.completed2023
dc.date.awarded2023
dc.format.dimensions
dc.format.accompanyingmaterialCD
dc.source.universityUniversity
dc.type.degreePh.D.
Appears in Departments:Department of Computer Engineering & Applications

Files in This Item:
File Description SizeFormat 
01.title.pdfAttached File45.19 kBAdobe PDFView/Open
02. prelim.pdf280.71 kBAdobe PDFView/Open
03. contents.pdf135.93 kBAdobe PDFView/Open
04.abstract.pdf57.32 kBAdobe PDFView/Open
05.chapter 1.pdf267.57 kBAdobe PDFView/Open
06.chapter 2.pdf174.69 kBAdobe PDFView/Open
07.chapter 3.pdf647.64 kBAdobe PDFView/Open
08.chapter 4.pdf389.86 kBAdobe PDFView/Open
09.chapter 5.pdf205.33 kBAdobe PDFView/Open
10.chapter 6.pdf30.69 kBAdobe PDFView/Open
11.annexure.pdf432.9 kBAdobe PDFView/Open
80_recommendation.pdf75.73 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: