Please use this identifier to cite or link to this item:
http://hdl.handle.net/10603/525772
Title: | Design fabrication and dielectric studies of cost effective and environmental benign epoxy nanocomposites for high performance applications |
Researcher: | Nisha P |
Guide(s): | Ravichandran C |
Keywords: | Fabrication High Voltage Nanocomposites |
University: | Anna University |
Completed Date: | 2022 |
Abstract: | The excellent chemical, electrical and mechanical properties of newlineepoxy resin cause extensive usage in high voltage instruments as insulation. newlineThe advancement in nanotechnology creates a wide expectation, as the newlinecombination of nanoparticles with epoxy resin systems enhances corrosion newlineresistance, electrical, mechanical and thermal properties of nanocomposite newlinematerials. Heat-tolerant polymers have a great demand in electrical, newlineelectronic, and structural packaging applications. The excellent adhesive, newlinechemical, thermal resistance and mechanical properties of epoxy resins help newlineto constitute the most successful thermoset polymer used as electrical newlineinsulative and structural adhesives. However, epoxy materials are limited to newlineroom temperature due to low thermal conductivity and accumulation of static newlinecharges causing high dielectric loss, lower fracture toughness and newlinedeterioration of the mechanical and electrical properties at elevated newlinetemperatures. This research aims to enhance the electrical, thermal, corrosion newlineand microbiological performances of epoxy resin by adding surface modified newlinenanoparticles. newlineChapter 4 presents the dielectric and thermal behaviour of 4- newlineaminobutyltriethoxysilane functionalized TiO2 nanoparticles (TiO2-ABTES) newlineloaded di-glycidylether bisphenol-A (DGEBA) nanocomposites. newlineTriethylenetetramine (TETA) is used to cure nanocomposite films.TiO2- newlineABTES-DGEBA nanocomposite films are characterized by FT-IR spectral newlinestudies to access the chemical bonding between fillers and epoxy resin. SEM newlineand AFM analysis facilitated access to evenly dispersed nanoparticles in the newlineepoxy matrix newline |
Pagination: | xxii,185p. |
URI: | http://hdl.handle.net/10603/525772 |
Appears in Departments: | Faculty of Electrical Engineering |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
01_title.pdf | Attached File | 23.17 kB | Adobe PDF | View/Open |
02_prelim_pages.pdf | 2.34 MB | Adobe PDF | View/Open | |
03_contents.pdf | 13.95 kB | Adobe PDF | View/Open | |
04_abstracts.pdf | 10.18 kB | Adobe PDF | View/Open | |
05_chapter1.pdf | 762.69 kB | Adobe PDF | View/Open | |
06_chapter2.pdf | 169.64 kB | Adobe PDF | View/Open | |
07_chapter3.pdf | 176.36 kB | Adobe PDF | View/Open | |
08_chapter4.pdf | 326.52 kB | Adobe PDF | View/Open | |
09_chapter5.pdf | 485.6 kB | Adobe PDF | View/Open | |
10_chapter6.pdf | 475.92 kB | Adobe PDF | View/Open | |
11_annexures.pdf | 127.04 kB | Adobe PDF | View/Open | |
80_recommendation.pdf | 82.44 kB | Adobe PDF | View/Open |
Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).
Altmetric Badge: