Please use this identifier to cite or link to this item:
http://hdl.handle.net/10603/522279
Title: | Design of computer aided diagnosis model for medical image classification using deep learning techniques |
Researcher: | Immaculate Rexi Jenifer P |
Guide(s): | Kannan S |
Keywords: | Computer aided diagnosis model Computer Science Computer Science Artificial Intelligence Deep Learning Engineering and Technology Image classification Medical image classification |
University: | Anna University |
Completed Date: | 2023 |
Abstract: | Medical image classification becomes a vital part of the design of Computer Aided Diagnosis (CAD) models. The conventional CAD models are majorly dependent upon the shapes, colors, and/or textures that are problem oriented and exhibited complementary in medical images. The recently developed Deep Learning (DL) approaches pave an efficient method of constructing dedicated models for classification problems. But the maximum resolution of medical images and small datasets, DL models are facing the issues of increased computation cost. In this aspect, this research study presents a deep convolutional neural network with hierarchical spiking neural network (DCNN-HSNN) for medical image classification. The proposed DCNN-HSNN technique aims to detect and classify the existence of newlinediseases using medical images. In addition, region growing segmentation technique is involved to determine the infected regions in the medical image. Moreover, NADAM optimizer with DCNN based Capsule Network (CapsNet) approach is used for feature extraction and derived a collection of feature vectors. Furthermore, the shark smell optimization algorithm (SSA) based HSNN approach is utilized for classification process. In order to validate the better performance of the DCNN-HSNN technique, a wide range of simulations take place against HIS2828 and ISIC2017 datasets. Medical imaging roles an important play in distinct medical applications like medical processes utilized for early recognition, analysis, observing, and treatment evaluation of several clinical conditions. newline newline |
Pagination: | xix, 154p. |
URI: | http://hdl.handle.net/10603/522279 |
Appears in Departments: | Faculty of Information and Communication Engineering |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
01_title.pdf | Attached File | 25.68 kB | Adobe PDF | View/Open |
02_prelim_pages.pdf | 1.04 MB | Adobe PDF | View/Open | |
03_contents.pdf | 511.84 kB | Adobe PDF | View/Open | |
04_abstracts.pdf | 357.77 kB | Adobe PDF | View/Open | |
05_chapter1.pdf | 597.97 kB | Adobe PDF | View/Open | |
06_chapter2.pdf | 293.06 kB | Adobe PDF | View/Open | |
07_chapter3.pdf | 1.21 MB | Adobe PDF | View/Open | |
08_chapter4.pdf | 1.75 MB | Adobe PDF | View/Open | |
09_chapter5.pdf | 1.45 MB | Adobe PDF | View/Open | |
10_annexures.pdf | 385.8 kB | Adobe PDF | View/Open | |
80_recommendation.pdf | 113.02 kB | Adobe PDF | View/Open |
Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).
Altmetric Badge: