Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/516177
Title: Enhanced Affinity Measures using Local Properties for Spectral Clustering
Researcher: Chintalapati, Lalith Srikanth
Guide(s): Sarma, Rachakonda Raghunatha
Keywords: Computer Science
Computer Science Interdisciplinary Applications
Engineering and Technology
University: Sri Sathya Sai Institute of Higher Learning
Completed Date: 2020
Abstract: Our research work consists of contribution in terms of devising three novel newlinesimilarity metrics in three major areas viz., a) Topological Node Features (TNF) newlinebased similarity b) Conformal Prediction (CP) based similarity and c) Steering newlinekernel covariance matrix based similarity. In the thesis, one can also see the role of newlineneighborhood information in the construction of effective similarity metrics for newlineSpectral Clustering(SC) framework. newline
Pagination: 
URI: http://hdl.handle.net/10603/516177
Appears in Departments:Department of Mathematics and Computer Science

Files in This Item:
File Description SizeFormat 
80_recommendation.pdfAttached File202.99 kBAdobe PDFView/Open
abstract.pdf120.51 kBAdobe PDFView/Open
chapter 1.pdf1.3 MBAdobe PDFView/Open
chapter 2.pdf277.03 kBAdobe PDFView/Open
chapter 3.pdf1.73 MBAdobe PDFView/Open
chapter 4.pdf877.4 kBAdobe PDFView/Open
chapter 5.pdf571.15 kBAdobe PDFView/Open
chapter 6.pdf83.75 kBAdobe PDFView/Open
contents.pdf66.44 kBAdobe PDFView/Open
prelim.pdf1.9 MBAdobe PDFView/Open
title.pdf328.14 kBAdobe PDFView/Open
Show full item record


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: