Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/513681
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialComputer Science
dc.date.accessioned2023-09-25T11:39:06Z-
dc.date.available2023-09-25T11:39:06Z-
dc.identifier.urihttp://hdl.handle.net/10603/513681-
dc.description.abstractAn Intrusion Detection System is a challenging and rapidly growing research field nowadays over the network. There is a possibility of increased development of intrusion or security issues occur in future. Some Systems are limited in identification and recognition of the intrusion and to enhance the victims such as a virus scanner or a firewall rule. Several well-known illustrations of attacks are portraying that they propagate at very high speeds on the internet. Thus there is a need to construct a Generic model to inspect the incoming packets over the internet. This work focuses on modeling an intelligent system for efficient detection of intrusion. The integrated system of header information and payload inspection increases the prediction rate of the intrusion detection and recognition, but it provides less performance rate while integration. Thus the approach of identifying and recognizing the attacks in the network traffic by using a novel framework known to be Intelligent Intrusion Detection Framework (IIDF) is employed to detect, recognize and label the intrusion suspected packet header and payload to increase the performance as well as the prediction rate of the inspection. newline
dc.format.extentxii, 212p.
dc.languageEnglish
dc.relation106 Nos.
dc.rightsuniversity
dc.titleAn Efficient Framework for Intrusion Detection in Heterogeneous Network Using Intrusion Pattern Recognition Methods
dc.title.alternative-
dc.creator.researcherUrmila, T.S
dc.subject.keywordComputer Science
dc.subject.keywordComputer Science Information Systems
dc.subject.keywordEngineering and Technology
dc.description.noteBibliography p.213-222
dc.contributor.guideBalasubramanian, V
dc.publisher.placeKodaikanal
dc.publisher.universityMother Teresa Womens University
dc.publisher.institutionDepartment of Computer Science
dc.date.registered2013
dc.date.completed2021
dc.date.awarded2021
dc.format.dimensionsA4
dc.format.accompanyingmaterialDVD
dc.source.universityUniversity
dc.type.degreePh.D.
Appears in Departments:Department of Computer Science

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File97.96 kBAdobe PDFView/Open
02_certificate.pdf247.32 kBAdobe PDFView/Open
03_abstract.pdf81.54 kBAdobe PDFView/Open
04_declaration.pdf177.62 kBAdobe PDFView/Open
05_acknowledge.pdf107.17 kBAdobe PDFView/Open
06_contents.pdf88.93 kBAdobe PDFView/Open
08_list of figures.pdf73.93 kBAdobe PDFView/Open
09_abbreviatins.pdf65.65 kBAdobe PDFView/Open
10_chapter 1.pdf1.28 MBAdobe PDFView/Open
11_chapter 2.pdf221.6 kBAdobe PDFView/Open
12_chapter 3.pdf1.05 MBAdobe PDFView/Open
13_chapter 4.pdf5.41 MBAdobe PDFView/Open
14_chapter 5.pdf2.3 MBAdobe PDFView/Open
15_chapter 6.pdf5.55 MBAdobe PDFView/Open
16_chapter 7.pdf1.79 MBAdobe PDFView/Open
17_chapter 8.pdf90.7 kBAdobe PDFView/Open
18_summary.pdf102.33 kBAdobe PDFView/Open
19_bibliography.pdf110.68 kBAdobe PDFView/Open
80_recommendation.pdf143.04 kBAdobe PDFView/Open
‭07_list of tables.pdf64.04 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: