Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/487499
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialMathematics
dc.date.accessioned2023-05-31T09:34:36Z-
dc.date.available2023-05-31T09:34:36Z-
dc.identifier.urihttp://hdl.handle.net/10603/487499-
dc.description.abstractIn this thesis an attempt is made to undertake a systematic analysis of the sensitivity of eigen systems in the natural geometric framework of the spectral portraits of the matrices The e spectra and the spectral portraits are shown to be efficient graphical tools for sensitivity analysis of eigenvalues and spectral decomposition of matrices The notion of e spectra is also shown to be an appropriate logical setting for spectral analysis of matrices which are known only up to a given accuracy
dc.format.extentNot Available
dc.languageEnglish
dc.relationNot Available
dc.rightsself
dc.titleGeometric analysis of spectral stability of matrices and operators
dc.title.alternativeNot available
dc.creator.researcherBora, Shreemayee
dc.subject.keywordMathematics
dc.subject.keywordPhysical Sciences
dc.description.noteNot Available
dc.contributor.guideAlam, Rafikul
dc.publisher.placeGuwahati
dc.publisher.universityIndian Institute of Technology Guwahati
dc.publisher.institutionDEPARTMENT OF MATHEMATICS
dc.date.registered1997
dc.date.completed2001
dc.date.awarded2001
dc.format.dimensionsNot Available
dc.format.accompanyingmaterialNone
dc.source.universityUniversity
dc.type.degreePh.D.
Appears in Departments:DEPARTMENT OF MATHEMATICS

Files in This Item:
File Description SizeFormat 
01_fulltext.pdfAttached File17.21 MBAdobe PDFView/Open
04_abstract.pdf2.49 MBAdobe PDFView/Open
80_recommendation.pdf7.09 MBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: