Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/487195
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialMathematics
dc.date.accessioned2023-05-30T07:10:14Z-
dc.date.available2023-05-30T07:10:14Z-
dc.identifier.urihttp://hdl.handle.net/10603/487195-
dc.description.abstractThroughout all graphs are assumed to be simple Let A G and L G denote the adjacency and the Laplacian matrix corresponding to a graph G respectively The second smallest eigen value of L G is called the algebraic connectivity of G and is denoted by a G A corresponding eigenvector is called a Fiedler vector of G The study of spectral integral variations in graphs has been a subject of interest in the past few years see Fan 21 22 23 Kirkland 46 and So 65 We say that the spectr
dc.format.extentNot Available
dc.languageEnglish
dc.relationNot Available
dc.rightsself
dc.titleOn the spectra and the laplacian spectra of graphs
dc.title.alternativeNot available
dc.creator.researcherBarik, Sasmita
dc.subject.keywordMathematics
dc.subject.keywordPhysical Sciences
dc.description.noteNot Available
dc.contributor.guidePati, Sukanta
dc.publisher.placeGuwahati
dc.publisher.universityIndian Institute of Technology Guwahati
dc.publisher.institutionDEPARTMENT OF MATHEMATICS
dc.date.registered2002
dc.date.completed2006
dc.date.awarded2006
dc.format.dimensionsNot Available
dc.format.accompanyingmaterialNone
dc.source.universityUniversity
dc.type.degreePh.D.
Appears in Departments:DEPARTMENT OF MATHEMATICS

Files in This Item:
File Description SizeFormat 
01_fulltext.pdfAttached File4.61 MBAdobe PDFView/Open
04_abstract.pdf285.67 kBAdobe PDFView/Open
80_recommendation.pdf481.32 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: