Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/479902
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialRecognition of glaucoma in fundus images using deep learning techniques and improve optic disc and optic cup segmentation
dc.date.accessioned2023-04-27T17:36:29Z-
dc.date.available2023-04-27T17:36:29Z-
dc.identifier.urihttp://hdl.handle.net/10603/479902-
dc.description.abstractGlaucoma is a perpetual damage of optic nerves which cause of newlinefractional or complete visual misfortune. The fundamental reason for this newlineillness is the increment of the intra-ocular pressure inside the eye which harms newlinethe optic nerve. It is projected that about 11 million people would be blind newlinefrom glaucoma by (2020) and it is the second leading cause for blindness newlineworldwide. Early-stage recognition of glaucoma is significant for eye disease newlinediagnosis. In this study, deep learning based techniques have been proposed newlinefor the recognition of glaucoma images from retinal fundus images. newlineInitially, an optimization-based Aging-SVM classifier has been newlineproposed for the recognition of glaucoma images from retinal fundus images. newlineThe performance of this method has been compared with different evolution newlineparameters such as Accuracy, Sensitivity and Specificity. The outcomes show newlinethat the proposed Aging-SVM classifier delivers 95% accuracy and it has been newlineimproved by 14% when compared with texture-based recognition system. newlineThe precise segmentation of optic disc and cup is yet an evolving newlineissue. Most of the segmentation based glaucoma recognition methods depends newlineon the handcrafted features. It affects the overall performance of the glaucom newline
dc.format.extentxv, 127p.
dc.languageEnglish
dc.relationp.116-126
dc.rightsuniversity
dc.titleRecognition of glaucoma in fundus images using deep learning techniques and improve optic disc and optic cup segmentation
dc.title.alternative
dc.creator.researcherShanmugam P
dc.subject.keywordEngineering and Technology
dc.subject.keywordComputer Science
dc.subject.keywordComputer Science Interdisciplinary Applications
dc.subject.keywordGlaucoma
dc.subject.keywordretinal
dc.subject.keywordintra-ocular
dc.description.note
dc.contributor.guideRaja J
dc.publisher.placeChennai
dc.publisher.universityAnna University
dc.publisher.institutionFaculty of Information and Communication Engineering
dc.date.registered
dc.date.completed2022
dc.date.awarded2022
dc.format.dimensions21 cms
dc.format.accompanyingmaterialNone
dc.source.universityUniversity
dc.type.degreePh.D.
Appears in Departments:Faculty of Information and Communication Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File97.19 kBAdobe PDFView/Open
02_prelim.pdf2.21 MBAdobe PDFView/Open
03_content.pdf10.23 kBAdobe PDFView/Open
04_abstract.pdf5.21 kBAdobe PDFView/Open
05_chapter 1.pdf202.56 kBAdobe PDFView/Open
06_chapter 2.pdf134.67 kBAdobe PDFView/Open
07_chapter 3.pdf354.54 kBAdobe PDFView/Open
08_chapter 4.pdf254.88 kBAdobe PDFView/Open
09_chapter 5.pdf267.79 kBAdobe PDFView/Open
10_chapter 6.pdf274.88 kBAdobe PDFView/Open
11_annexures.pdf78.27 kBAdobe PDFView/Open
80_recommendation.pdf103.27 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: