Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/474019
Full metadata record
DC FieldValueLanguage
dc.coverage.spatial
dc.date.accessioned2023-03-31T12:04:00Z-
dc.date.available2023-03-31T12:04:00Z-
dc.identifier.urihttp://hdl.handle.net/10603/474019-
dc.description.abstractquotIn recent scenarios, the diagnosis of various cardiovascular newlinediseases is predominantly done by the proper investigation of newlineElectrocardiogram (ECG) signal. Typical heart diseases can be identified newlineby any modifications in the characteristic waves of ECG signal. In order newlineto identify and diagnose the Cardiac Ailments the characteristic waves newlineof ECG signal such as P, QRS complex and T waves are ought to be newlinedetected. With the advancements in technology and sciences, especially newlinethe use of wearable devices identifies ECG of particular person and with newlineproper software installed in it can automatically classify the ECG of newlinecardiac ailments which helps to diagnose these diseases earlier. newlineArrhythmia, Congestive Heart Failure and Atrial Fibrillation are some of newlinethe life-threatening cardiac ailments that may lead to sudden deaths in newlinemany cases. The work used these cardiovascular diseases along with newlinean unaltered ECG signal Normal Sinus Rhythm is taken from MIT-BIH newlinephysionet database to classify and detect the altered ECG signal.quot newline newline
dc.format.extent199 pg
dc.languageEnglish
dc.relation
dc.rightsuniversity
dc.titleCardiac Ailments Classification of Electrocardiogram Signals Using Machine Learning and Deep Learning Algorithms
dc.title.alternative
dc.creator.researcherLANKA ALEKHYA
dc.subject.keywordEngineering
dc.subject.keywordEngineering and Technology
dc.subject.keywordEngineering Electrical and Electronic
dc.description.note
dc.contributor.guideP. RAJESH KUMAR
dc.publisher.placeVishakhapatnam
dc.publisher.universityAndhra University
dc.publisher.institutionDepartment of Electronics and Communication Engineering
dc.date.registered
dc.date.completed2022
dc.date.awarded2023
dc.format.dimensions
dc.format.accompanyingmaterialDVD
dc.source.universityUniversity
dc.type.degreePh.D.
Appears in Departments:Department of Electronics & Communication Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File82.09 kBAdobe PDFView/Open
02_prelim pages.pdf491.75 kBAdobe PDFView/Open
03_content.pdf55.2 kBAdobe PDFView/Open
04_abstract.pdf108.27 kBAdobe PDFView/Open
05_chapter 1.pdf204.54 kBAdobe PDFView/Open
06_chapter 2.pdf76.54 kBAdobe PDFView/Open
07_chapter 3.pdf536.28 kBAdobe PDFView/Open
08_chapter 4.pdf446.29 kBAdobe PDFView/Open
09_chapter 5.pdf364.37 kBAdobe PDFView/Open
10_chapter 6.pdf544.44 kBAdobe PDFView/Open
11_chapter 7.pdf556.03 kBAdobe PDFView/Open
12_annexures.pdf164.37 kBAdobe PDFView/Open
80_recommendation.pdf135.21 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: