Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/473654
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialMathematics
dc.date.accessioned2023-03-31T05:19:07Z-
dc.date.available2023-03-31T05:19:07Z-
dc.identifier.urihttp://hdl.handle.net/10603/473654-
dc.description.abstractWe explored the Heisenberg uniqueness pairs corresponding to the spiral hyperbola circle cross exponential curves and surfaces Then we prove a characterization of the Heisenberg uniqueness pairs corresponding to four parallel lines We observe that the size of the determining sets for X depends on the number of lines and their irregular distribution that further relates to a phenomenon of interlacing of the zero sets of certain trigonometric polynomials
dc.format.extentNot Available
dc.languageEnglish
dc.relationNot Available
dc.rightsself
dc.titleUniqueness of the fourier transform on the euclidean spaces and certain locally compact lie groups
dc.title.alternativeNot available
dc.creator.researcherGiri, Deb Kumar
dc.subject.keywordMathematics
dc.subject.keywordPhysical Sciences
dc.description.noteNot Available
dc.contributor.guideSrivastava, Rajesh Kumar
dc.publisher.placeGuwahati
dc.publisher.universityIndian Institute of Technology Guwahati
dc.publisher.institutionDEPARTMENT OF MATHEMATICS
dc.date.registered2013
dc.date.completed2018
dc.date.awarded2018
dc.format.dimensionsNot Available
dc.format.accompanyingmaterialNone
dc.source.universityUniversity
dc.type.degreePh.D.
Appears in Departments:DEPARTMENT OF MATHEMATICS

Files in This Item:
File Description SizeFormat 
01_fulltext.pdfAttached File4.43 MBAdobe PDFView/Open
04_abstract.pdf142.86 kBAdobe PDFView/Open
80_recommendation.pdf157.54 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: