Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/470791
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialLocal outlier detection by integrating fuzzy constraint and ensemble framework using Bio inspired algorithms
dc.date.accessioned2023-03-20T05:12:22Z-
dc.date.available2023-03-20T05:12:22Z-
dc.identifier.urihttp://hdl.handle.net/10603/470791-
dc.description.abstractThe main objective of the work is to detect local outliers by newlineintegrating the fuzzy constraint and ensemble framework using Bio-Inspired newlineAlgorithms. Outliers are the data values that deviate significantly from the newlinemajority of the data and their values normally fall aside from the overall newlinepattern of the data. Outlier detection aims to determine such type of dissimilar newlineand exceptional events. newlineThe thesis is divided into six chapters. Chapter one gives an newlineoverview of introduction to outlier detection. Outlier detection finds newlinewidespread applications in intrusion detection, fraud detection, medical newlinediagnosis, fake news detection, sensor networks and so on. The different types newlineof outliers, classification of outlier detection methods based on data labels and newlinemethodologies, challenges in outlier detection are presented in detail. newlineThe motivation of the research and the research objectives are also newlinehighlighted in this section. newlineChapter two provides a detailed review of literature pertaining to newlinethe proposed work. The survey includes the methodologies, advantages and newlinedrawbacks of the outlier detection methods, subspace methods, fuzzy newlineapproaches, ensemble based methods and bio inspired algorithms. newlineThis section also outlines the outlier detection methods on high dimensional newlinedata, mixed type data, categorical data and multi view data. newline
dc.format.extentxviii,120p.
dc.languageEnglish
dc.relationp.109-119
dc.rightsuniversity
dc.titleLocal outlier detection by integrating fuzzy constraint and ensemble framework using Bio inspired algorithms
dc.title.alternative
dc.creator.researcherSharon Femi, P
dc.subject.keywordEngineering and Technology
dc.subject.keywordComputer Science
dc.subject.keywordLibrary Information and Science
dc.subject.keywordOutlier Detection
dc.subject.keywordFuzzy Constraint
dc.subject.keywordFeature correlation
dc.description.note
dc.contributor.guideGanesh Vaidyanathan, S
dc.publisher.placeChennai
dc.publisher.universityAnna University
dc.publisher.institutionFaculty of Information and Communication Engineering
dc.date.registered
dc.date.completed2022
dc.date.awarded2022
dc.format.dimensions21cm
dc.format.accompanyingmaterialNone
dc.source.universityUniversity
dc.type.degreePh.D.
Appears in Departments:Faculty of Information and Communication Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File27.43 kBAdobe PDFView/Open
02_prelim pages.pdf3.4 MBAdobe PDFView/Open
03_content.pdf9.94 kBAdobe PDFView/Open
04_abstract.pdf7.52 kBAdobe PDFView/Open
05_chapter 1.pdf143.4 kBAdobe PDFView/Open
06_chapter 2.pdf84.89 kBAdobe PDFView/Open
07_chapter 3.pdf177.34 kBAdobe PDFView/Open
08_chapter 4.pdf167.02 kBAdobe PDFView/Open
09_chapter 5.pdf288.66 kBAdobe PDFView/Open
10_annexures.pdf79.48 kBAdobe PDFView/Open
80_recommendation.pdf68.88 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: