Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/468620
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialCertain investigation on adaboost modified classifier for data optimization in internet of things environment
dc.date.accessioned2023-03-14T06:44:30Z-
dc.date.available2023-03-14T06:44:30Z-
dc.identifier.urihttp://hdl.handle.net/10603/468620-
dc.description.abstractThe Internet of Things (IoT) network aids in the collection, communication, processing, and application of technology in numerous domains like healthcare, environmental surveillance, transport, manufacturing, and so on. This recent networking paradigm makes use of mobile devices, sensors, actuators, and RFID tags, which are capable of coordinating amongst themselves and utilizing the Internet infrastructure for communication. Wireless Sensor Networks (WSNs) aids in the collection and transmission of data that greatly affect the total performance of the IoT. The large amount of data collected by WSN is either unstructured or semi-structured and is transmitted to IoT for processing. To resolve the storage issues of the huge data generated by IoT, the Hadoop Distributed File System (HDFS) is used to stream the data to user applications as required. It is difficult to accomplish analysis of vast amount of data with existing data processing methods. Thus, in our proposed work data is classified to remove redundant and incorrect data, only relevant data is stored and processed. Various classifiers are used for classifying the data obtained by WSN. In this work, AdaBoost classifier is used for classification of data. To avoid redundant classifiers and also conventional AdaBoost algorithm was built through over consumption of system resources, an ensemble algorithm is proposed in this work. Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Stochastic Diffusion Search (SDS) with AdaBoost classifier that can reinitialize attributes, thus avoiding reaching local optimum, and optimizing the coefficients of AdaBoost weak classifiers. newline
dc.format.extentxvii,121p.
dc.languageEnglish
dc.relationp.110-120
dc.rightsuniversity
dc.titleCertain investigation on adaboost modified classifier for data optimization in internet of things environment
dc.title.alternative
dc.creator.researcherSuganya, E
dc.subject.keywordEngineering and Technology
dc.subject.keywordComputer Science
dc.subject.keywordComputer Science Information Systems
dc.subject.keywordAdaBoost
dc.subject.keywordIOT
dc.subject.keywordOptimization
dc.description.note
dc.contributor.guideRajan, C
dc.publisher.placeChennai
dc.publisher.universityAnna University
dc.publisher.institutionFaculty of Information and Communication Engineering
dc.date.registered
dc.date.completed2021
dc.date.awarded2021
dc.format.dimensions21cm
dc.format.accompanyingmaterialNone
dc.source.universityUniversity
dc.type.degreePh.D.
Appears in Departments:Faculty of Information and Communication Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File22.28 kBAdobe PDFView/Open
02_prelim pages.pdf738.41 kBAdobe PDFView/Open
03_content.pdf394.64 kBAdobe PDFView/Open
04_abstract.pdf129.84 kBAdobe PDFView/Open
05_chapter 1.pdf223.06 kBAdobe PDFView/Open
06_chapter 2.pdf185.05 kBAdobe PDFView/Open
07_chapter 3.pdf221.42 kBAdobe PDFView/Open
08_chapter 4.pdf441.17 kBAdobe PDFView/Open
09_chapter 5.pdf791.14 kBAdobe PDFView/Open
10_annexures.pdf108.85 kBAdobe PDFView/Open
80_recommendation.pdf68.55 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: