Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/468614
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialAn improved machine learning approach for diagnosis of pancreatic cancer using multi modal clinical data
dc.date.accessioned2023-03-14T06:27:14Z-
dc.date.available2023-03-14T06:27:14Z-
dc.identifier.urihttp://hdl.handle.net/10603/468614-
dc.description.abstractClinical diagnosis is a challenging task since data sources are newlineheterogeneous. Owing to the advancements in the healthcare field, the newlinebenefits of diagnosis have proved to exhibit an improvement. Among clinical newlineexperts, there is a positivity and hope that the use of a computer-aided newlinediagnosis system, will aid radiologists in interpreting images and better newlinedecision making for diagnosis. Human beings have always been susceptible to newlinemany kinds of life-threatening diseases. Several diseases pose a serious threat newlineto humans out of which, Pancreatic Adenocarcinoma (PDAC) is common, newlineaffecting people over 45 years of age. newlinePDAC ranks 4th in the world among cancers. Generally, the newlineconventional approach of examining individuals to diagnose the disease are newlineCT, MRI, PET scan, and Ultrasound (US). This provides a pathway for newlinebuilding an efficient pancreatic cancer diagnosis system from multi-modal newline(Structured EHRs, Jaundiced Eye images, and pancreatic CTs) clinical data to newlinepredict the risk level of individuals and detect the signs of pancreatic disease newlinefor immediate surgical planning. newlineExtracting patterns from newline
dc.format.extentxxi, 132p.
dc.languageEnglish
dc.relationp.125-131
dc.rightsuniversity
dc.titleAn improved machine learning approach for diagnosis of pancreatic cancer using multi modal clinical data
dc.title.alternative
dc.creator.researcherReena Roy R
dc.subject.keywordEngineering and Technology
dc.subject.keywordComputer Science
dc.subject.keywordComputer Science Interdisciplinary Applications
dc.description.note
dc.contributor.guideAnandha Mala G S
dc.publisher.placeChennai
dc.publisher.universityAnna University
dc.publisher.institutionFaculty of Information and Communication Engineering
dc.date.registered
dc.date.completed2022
dc.date.awarded2022
dc.format.dimensions21 cm
dc.format.accompanyingmaterialNone
dc.source.universityUniversity
dc.type.degreePh.D.
Appears in Departments:Faculty of Information and Communication Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File169.77 kBAdobe PDFView/Open
02_prelim pages.pdf904.67 kBAdobe PDFView/Open
03_content.pdf213.77 kBAdobe PDFView/Open
04_abstract.pdf181.67 kBAdobe PDFView/Open
05_chapter 1.pdf698.65 kBAdobe PDFView/Open
06_chapter 2.pdf316.51 kBAdobe PDFView/Open
07_chapter 3.pdf719.56 kBAdobe PDFView/Open
08_chapter 4.pdf1.19 MBAdobe PDFView/Open
09_chapter 5.pdf1.16 MBAdobe PDFView/Open
10_chapter 6.pdf1.08 MBAdobe PDFView/Open
11_chapter 7.pdf2.06 MBAdobe PDFView/Open
12_annexures.pdf76.42 kBAdobe PDFView/Open
80_recommendation.pdf64.47 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: