Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/460190
Full metadata record
DC FieldValueLanguage
dc.coverage.spatial
dc.date.accessioned2023-02-17T11:20:32Z-
dc.date.available2023-02-17T11:20:32Z-
dc.identifier.urihttp://hdl.handle.net/10603/460190-
dc.description.abstractA function f de...ned in the open complex plane C is said to be analytic newlineat at a point z 0 if there exists a neighbourhood of z 0 at all points of which newlinef 0 (z) exists. If f is not analytic at z 0 then the point z 0 is called a singular newlinepoint or the singularity of f . Now if f be a single valued analytic function newlineon an annulus D : r 2 lt jz newlinej lt r 1 then at each point z 2 D, f can be newline1 newline1 newlineX newlineX newlinen newlinerepresented by a series of the form f (z) = newlinea n (z newline) + newlineb n (z newline) n ; newlinen=0 newlinen=1 newlineR newlineR newlinef (z) newline1 newlinewhere a n = 2 1 i C (z f (z) newlinedz newlineand newlineb newline= newlinedz: newlinen newline2 i C (z newline) n+1 newline) n+1 newlineThe above series is called the Laurent s series of f about the point z = : newlineA function f de...ned in the open complex plane C is said to be mero- newlinemorphic is it is analytic except at its poles. A function f is said to be newlinean entire or an integral function if it is analytic everywhere in the ...nite newlinecomplex plane. The Taylor series expansion of f about z = 0 is given by newlinef = a 0 + a 1 z + a 2 z 2 + ::: ::: ::: + a n z n + :::::: , which can be expressed as newlinean extension of a polynomial. The rate of growth of of a polynomial is es- newlinetimated by the degree of the polynomial, which is equal to the number of newlinezeros, as independent variable moves without bound. newlineThe maximum modulus function of an entire function f on jzj = r is newlinede...ned as M (r; f ) = max jf (z)j which is especially used to characterise the newlinejzj=r newlinegrowth of an entire function and the distribution of its zeros. Also M (r; f ) newlineis unbounded for any non-constant entire function and by maximum mod- newlineulus theorem M (r; f ) increases monotonically as r increases. The function newlinelog M (r; f ) is a continuous, convex and increasing function of log r: newline
dc.format.extent100
dc.languageEnglish
dc.relationYes
dc.rightsuniversity
dc.titleNew dimensional approach to the measurement of growths of complex valued functions
dc.title.alternative
dc.creator.researcherDey, Satavisha
dc.subject.keywordMathematics
dc.subject.keywordMathematics Applied
dc.subject.keywordPhysical Sciences
dc.description.note
dc.contributor.guideDatta, Sanjib Kumar
dc.publisher.placeKalyani
dc.publisher.universityUniversity of Kalyani
dc.publisher.institutionMathematics
dc.date.registered2017
dc.date.completed2019
dc.date.awarded2019
dc.format.dimensions
dc.format.accompanyingmaterialDVD
dc.source.universityUniversity
dc.type.degreePh.D.
Appears in Departments:Hindi

Files in This Item:
File Description SizeFormat 
01_title. pdf.pdfAttached File222.78 kBAdobe PDFView/Open
02_declaration. pdf.pdf2.97 MBAdobe PDFView/Open
03_certificate. pdf.pdf33.17 kBAdobe PDFView/Open
04_acknowledgement. pdf.pdf134.03 kBAdobe PDFView/Open
05_content. pdf.pdf131.33 kBAdobe PDFView/Open
06_chapter 1. pdf.pdf229.72 kBAdobe PDFView/Open
07_chapter 2. pdf.pdf370.19 kBAdobe PDFView/Open
08_chapter 3. pdf.pdf534.03 kBAdobe PDFView/Open
09_chapter 4. pdf.pdf288.06 kBAdobe PDFView/Open
10_chapter 5. pdf.pdf237.5 kBAdobe PDFView/Open
11_chapter .6. pdf.pdf270.64 kBAdobe PDFView/Open
12_chapter 7. pdf.pdf385.98 kBAdobe PDFView/Open
14_bibliography. pdf.pdf491.48 kBAdobe PDFView/Open
15_abstract.pdf560.57 kBAdobe PDFView/Open
80_recommendation.pdf256.58 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: