Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/459584
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialNA
dc.date.accessioned2023-02-17T07:01:40Z-
dc.date.available2023-02-17T07:01:40Z-
dc.identifier.urihttp://hdl.handle.net/10603/459584-
dc.description.abstractWe solve the question which finite dimensional irreducible orthogonal representationsof connected reductive complex Lie groups lift to the spin group We have found a criterion in terms of the highest weight of the representation essentially a polynomial in the highest weight whose value is even if and onlyif the corresponding representation lifts The criterion is closely related tothe Dynkin Index of the representation We deduce that the highest weightsof the lifting representations are periodic with a finite fundamental domain Further we calculate these periods explicitly for a few low rank groups newline newline
dc.format.extentNA
dc.languageEnglish
dc.relationNA
dc.rightsself
dc.titleSpinorial representations of lie groups
dc.title.alternativeNa
dc.creator.researcherJOSHI, ROHIT
dc.subject.keywordMathematics
dc.subject.keywordPhysical Sciences
dc.description.noteNA
dc.contributor.guideSPALLONE, STEVEN
dc.publisher.placePune
dc.publisher.universityIndian Institute of Science Education and Research (IISER) Pune
dc.publisher.institutionDepartment of Mathematics
dc.date.registered2009
dc.date.completed2016
dc.date.awarded2016
dc.format.dimensionsNA
dc.format.accompanyingmaterialNone
dc.source.universityUniversity
dc.type.degreePh.D.
Appears in Departments:Department of Mathematics

Files in This Item:
File Description SizeFormat 
01_fulltext.pdfAttached File5.72 MBAdobe PDFView/Open
04_abstract.pdf135.6 kBAdobe PDFView/Open
80_recommendation.pdf425.91 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: