Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/457910
Full metadata record
DC FieldValueLanguage
dc.coverage.spatial
dc.date.accessioned2023-02-14T08:41:24Z-
dc.date.available2023-02-14T08:41:24Z-
dc.identifier.urihttp://hdl.handle.net/10603/457910-
dc.description.abstractWe propose an algorithmic approach to build a Machine Translation System for Gujarati language, by developing an adequate software support along with manually created Dictionaries/ Corpuses. Focus has been made on building a Paninian Grammar based partial Machine Translation system, where we have used language specific rules, classification algorithms and manually prepared corpuses for statistical analysis wherever required. This approach is based on a layered structure to fulfil a complete Machine Translation of Natural Language from Gujarati to English and vice versa. At each layer, the necessary and sufficient information, namely the word, phrase and sentence level information, is extracted from the input using the software. The software uses manually tagged Corpuses as learning databases. Keeping the primary focus on the translation phase, a given sentence at the source language is translated to target language using the word, phrase and sentence level information collected during the previous phases. Noteworthy results have been attained for different phases of Machine Translation, such as POS (Part Of Speech) Tagger with 96.46% accuracy, Shallow Parser (Chunker) with 96.22% accuracy and Morph Generator/Analyzer with 100% accuracy. Out of various categories of words, such as Noun, Adjective, Verb, Adverb etc, the Morph Analyzer has been built only for Noun words. This essentially helps prove the efficiency of the algorithm. An algorithm for the final phase, i.e. the Parser, has been shown to be effective for simple sentences as is highlighted later in the thesis. The implementation of the algorithm requires manually created verb frames and a full working Morph Analyzer and hence has been excluded in the present work. Notably, the present work is believed to be first of its kind for Machine Translation for Gujarati language. newline newline
dc.format.extent188
dc.languageEnglish
dc.relation
dc.rightsuniversity
dc.titleIssues and Challenges for Machine Translation of Gujarati to English Language
dc.title.alternative
dc.creator.researcherPatel,Chirag D
dc.subject.keywordArtificial Intelligence
dc.subject.keywordComputer Science
dc.subject.keywordComputer Science Artificial Intelligence
dc.subject.keywordEngineering and Technology
dc.subject.keywordMachine Translation
dc.subject.keywordNatural Language Processing
dc.description.note
dc.contributor.guideAhalpara,Dilip P
dc.publisher.placeNadiad
dc.publisher.universityDharmsinh Desai University
dc.publisher.institutionEngineering
dc.date.registered2011
dc.date.completed2019
dc.date.awarded2020
dc.format.dimensions
dc.format.accompanyingmaterialNone
dc.source.universityUniversity
dc.type.degreePh.D.
Appears in Departments:Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File58.41 kBAdobe PDFView/Open
02_prelim pages.pdf95.55 kBAdobe PDFView/Open
03_content.pdf38.4 kBAdobe PDFView/Open
04_abstract.pdf36.23 kBAdobe PDFView/Open
05_chapter 1.pdf799.09 kBAdobe PDFView/Open
06_chapter 2.pdf531 kBAdobe PDFView/Open
07_chapter 3.pdf111.61 kBAdobe PDFView/Open
08_chapter 4.pdf1.18 MBAdobe PDFView/Open
09_chapter 5.pdf591.45 kBAdobe PDFView/Open
10_chapter 6.pdf136.25 kBAdobe PDFView/Open
12_chapter 8.pdf673.17 kBAdobe PDFView/Open
13_chapter 9.pdf528.33 kBAdobe PDFView/Open
14_annexures.pdf75 kBAdobe PDFView/Open
80_recommendation.pdf99.88 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: