Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/451471
Title: Biochemical characterization of UvrD helicase and its 1 interplay with DNA mismatch repair proteins in 2 Neisseria gonorrhoeae
Researcher: Ganguli, Debayan
Guide(s): Rao, Desirazu N
Keywords: Biochemical Research Methods
Biology and Biochemistry
Life Sciences
University: Indian Institute of Science Bangalore
Completed Date: 2019
Abstract: UvrD helicase belongs to type I superfamily of helicases. It participates in Nucleotide Excision Repair (NER) and DNA Mismatch Repair (MMR). It also participates in the rolling circle replication. It has been shown that UvrD can dismantle several proteins from DNA such as RecA and Tus protein. By unwinding the recombination intermediates and dismantling RecA from DNA, it acts as an anti- recombinase. UvrD has also been shown to physically interact with RNA polymerase and helps in the transcription coupled repair. In addition to these roles, UvrD helicase also contributes to the virulence of many pathogenic bacteria. In Mycobacterium tuberculosis, the inactivation of uvrD1 gene reduced its persistence in a mouse model of tuberculosis infection. Inactivation of uvrD gene in Neisseria meningitis increases the rate of phase variation. The uvrD null mutants of Haemophilus influenza exhibit a high degree of UV sensitivity and reduced level of host cell reactivation and decreased phage recombination. Biochemical studies of Helicobacter pylori UvrD (HpUvrD) shows that it can unwind DNA duplex using the energy derived from GTP hydrolysis and deletion of the C- terminal 63 residues disrupted the oligomerisation of HpUvrD. (30). Similar studies with Haemophilus influenzae UvrD reveal that the C- terminal 48 residues are important for its oligomerisation (30). In spite of these important roles in the virulence of pathogenic bacteria, a few UvrD helicase from pathogenic bacteria have been bio-chemically characterized. In this study, UvrD helicase from N. gonorrohoeae (NgoUvrD) has been bio-chemically characterized. NgoUvrD was cloned into pET14b vector between NdeI and BamHI. The protein was heterologously expressed as N- terminal His6 tag. NgoUvrD was then purified with Ni2+-NTA affinity chromatography followed by Heparin Sepharose chromatography. Size exclusion chromatography indicates that NgoUvrD behaves as dimer in solution. NgoUvrD has been found to unwind varied range of substrates like DNA with 5 overhang, DNA...
Pagination: 126 p.
URI: http://hdl.handle.net/10603/451471
Appears in Departments:Biochemistry

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File40.8 kBAdobe PDFView/Open
02_prelim pages.pdf114.64 kBAdobe PDFView/Open
03_table of content.pdf68.09 kBAdobe PDFView/Open
04_chapter1.pdf1.23 MBAdobe PDFView/Open
05_chapter2.pdf315.6 kBAdobe PDFView/Open
06_chapter3.pdf1.22 MBAdobe PDFView/Open
07_annexure.pdf145.36 kBAdobe PDFView/Open
80_recommendation.pdf982.35 kBAdobe PDFView/Open
Show full item record


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: