Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/449431
Title: Object extraction in a quantum inspired soft computing environment
Researcher: Pal, Pankaj
Guide(s): Bhattacharyya, Siddhartha
Keywords: Computer Science
Computer Science Software Engineering
Engineering and Technology
Intelligent control systems
University: Maulana Abul Kalam Azad University of Technology
Completed Date: 2021
Abstract: Differentkindsofnoiseremovalintelligenttechniquesarebeingusedtoex- newlinetract objectsbymeansofremovalofnoiseartifacts.Amongtheintelligenttools newlinein vogue,theMulti-LayerSelfOrganizingNeuralNetworkarchitecture(ML- newlineSONN) architectureisefficientinextractingobjectsfromblurredandnoisybi- newlinenary images.Grayscaleimagesaresegmentedusingthenetworkbyresorting newlineto amultilevelsigmoidalactivationfunctionsoastoelicitnetworkresponses newlineto allpossiblegrayscales.AparallelMulti-LayerSelfOrganizingNeuralNet- newlinework architecture(PSONN)comprisingthreeparallelMulti-LayerSelfOrganiz- newlineing NeuralNetworkarchitectureswith/withoutmultilevelsigmoidalactivation newlinefunctions canbeusedtoextractpureandtruecolornoisyimages. newlineIn thisthesis,aquantumversionoftheMLSONNarchitectureisproposedtoex- newlinetract andsegmentnoisyimages.TheproposedQMLSONNnetworkarchitecture newlinecomprises threedifferentlayersviz.inputlayer,hiddenlayerandoutputlayer newlineenvisaged by qubit neurons,whereeach qubit neuronineachlayercorresponds newlineto eachpixeloftheinputimage.Theinterconnectionweightsbetweenthediffer- newlineent layersarerepresentedasquantumrotationgates.The qubit neuronhasthe newlineability toextracttheobjectsbyresortingtotheprincipleofquantumsuperposi- newlinetion. newlineThe qubit neuronsofthethreenetworklayersprocesstheimageinformationus- newlineing quantumrotationgatesasinterconnectionweightsguidedbyaquantum newlinebackpropagationalgorithm.Attheoutputlayer,aquantummeasurementis newlineused todestroythequantumstatestoyieldnetworkoutputswhiletheinter- newlineconnection weightsareadjustedusingaquantumbackpropagationalgorithm. newlineA parallelversionoftheproposedarchitecturecomprisingthreeindependent newlineQMLSONN architectures(referredtoasQPSONN)witheacharchitectureen- newlinetrustedforprocessingthethreeindividualprimarycolorcomponents(R,G,B), newlineis alsoproposedtoextractcolorobjectsfrompurecolornoisyimages. newlineA functionalmodificationoftheproposedQMLSONNarchitectureisachieved newlineby incorporatingaMultilevelSigmoidal(MUSIG)activationfunctionsothatthe newlinenetwork isabletosegmentmultilevelgrayscaleimages.Onsimilarlines,the newlineQPSONN architectureisalsomodifiedbyincorporatingmultilevelcharacte
Pagination: xxiv,184p
URI: http://hdl.handle.net/10603/449431
Appears in Departments:School of Engineering & Technology

Files in This Item:
File Description SizeFormat 
01_title page.pdfAttached File27.23 kBAdobe PDFView/Open
02_prelim_pages.pdf118.82 kBAdobe PDFView/Open
03_content.pdf31.63 kBAdobe PDFView/Open
04_abstract.pdf30.56 kBAdobe PDFView/Open
05_chapter 1.pdf479.32 kBAdobe PDFView/Open
06_chapter 2.pdf160.17 kBAdobe PDFView/Open
07_chapter 3.pdf1.68 MBAdobe PDFView/Open
08_chapter 4.pdf497.57 kBAdobe PDFView/Open
09_chapter 5.pdf1.27 MBAdobe PDFView/Open
10_chapter 6.pdf433.15 kBAdobe PDFView/Open
11_chapter 7.pdf59.59 kBAdobe PDFView/Open
80_recommendation.pdf78.26 kBAdobe PDFView/Open
Show full item record


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: