Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/431443
Full metadata record
DC FieldValueLanguage
dc.coverage.spatial
dc.date.accessioned2022-12-26T06:25:09Z-
dc.date.available2022-12-26T06:25:09Z-
dc.identifier.urihttp://hdl.handle.net/10603/431443-
dc.description.abstractDesigning an experiment is an essential component of any scientific investigation. Experimental design aids in finding the conditions which are most favorable for particular characteristics (response). In erstwhile, the traditional one-factor-at-a-time (OFAT) and classical design of experiment (DOE) or factorial design are the two different strategies used for screening and optimization of any product and process system. The traditional OFAT approach examines only one parameter at a time while keeping other parameters constant and does not estimate interaction which results in inadequate optimization. On the other hand, however, DOE allows us to identify both the significant factor and important interactions among the factor in the fewer test than OFAT. It fails to predict the best factor level settings to meet the desired goal (minimum/maximum/desired responses) in the experimental region. The limitations of the classical method are eliminated by optimizing all the affecting variables collectively using response surface methodology (RSM) introduced by Box and Wilson (1951). newline
dc.format.extent
dc.languageEnglish
dc.relation
dc.rightsuniversity
dc.titleEfficient and Cost Effective Response Surface Designs for Product and or Process Optimization
dc.title.alternative
dc.creator.researcherM, Hemavathi
dc.subject.keywordAgricultural Engineering
dc.subject.keywordAgricultural Sciences
dc.subject.keywordExperimental design
dc.subject.keywordLife Sciences
dc.subject.keywordResponse surfaces (Statistics)
dc.subject.keywordScientific applications
dc.description.note
dc.contributor.guideShekhar, Shashi
dc.publisher.placeVaranasi
dc.publisher.universityBanaras Hindu University
dc.publisher.institutionDepartment of Agricultural Engineering
dc.date.registered
dc.date.completed2021
dc.date.awarded2022
dc.format.dimensions
dc.format.accompanyingmaterialDVD
dc.source.universityUniversity
dc.type.degreePh.D.
Appears in Departments:Department of Agricultural Economics

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File377.97 kBAdobe PDFView/Open
02_prelim pages.pdf352.59 kBAdobe PDFView/Open
03_content.pdf208.63 kBAdobe PDFView/Open
04_abstract.pdf596.56 kBAdobe PDFView/Open
05_chapter1.pdf355.42 kBAdobe PDFView/Open
06_chapter2.pdf827.92 kBAdobe PDFView/Open
07_chapter3.pdf876.08 kBAdobe PDFView/Open
08_chapter4.pdf1.16 MBAdobe PDFView/Open
09_chapter5.pdf460.15 kBAdobe PDFView/Open
10_annexures.pdf3.27 MBAdobe PDFView/Open
11_chapter6.pdf825.58 kBAdobe PDFView/Open
12_chapter7.pdf466.63 kBAdobe PDFView/Open
13_chapter8.pdf1.68 MBAdobe PDFView/Open
14_chapter9.pdf260.71 kBAdobe PDFView/Open
80_recommendation.pdf639.15 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: