Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/40775
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialSegmentation and detection Of white blood cells Using fuzzy based algorithmsen_US
dc.date.accessioned2015-05-09T08:34:48Z-
dc.date.available2015-05-09T08:34:48Z-
dc.date.issued2015-05-09-
dc.identifier.urihttp://hdl.handle.net/10603/40775-
dc.description.abstractWhite Blood Cell WBC detection is one of the most key steps in the automatic WBC recognition system Its accuracy and stability greatly affect the recognition accuracy of the whole system In this work computer based segmentation and classification of the four main classes of WBC Neutrophils Eosinophils Lymphocytes and Monocytes were completed Soft computing algorithms including Neural Network NN and Polynomial Classifiers PC were used for WBC classification while watershed and thresholding based on size shape colour and texture characteristics were used to segment WBC from Red Blood Cells RBC platelets cell fragments and stains Automating the segmentation and classification of WBC could provide a useful tool in medical diagnoses newlineImage processing method concerned five basic mechanism which are image acquisition image preprocessing image segmentation image post processing and image analysis The most serious step in image processing is the segmentation of the picture In this work the analysis is on some of the common segmentation technique that have found request in classification in biomedical image processing particularly in blood cell image processing The information that the segmented image should hold maximum useful information and remove unwanted information makes the entire procedure critical newline newlineen_US
dc.format.extentxx, 175p.en_US
dc.languageEnglishen_US
dc.relationp165-174.en_US
dc.rightsuniversityen_US
dc.titleSegmentation and detection Of white blood cells Using fuzzy based algorithmsen_US
dc.title.alternativeen_US
dc.creator.researcherRavikumar Sen_US
dc.subject.keywordNeutrophils Eosinophils Lymphocytesen_US
dc.subject.keywordPolynomial Classifiersen_US
dc.subject.keywordRed Blood Cellsen_US
dc.subject.keywordWhite Blood Cellen_US
dc.description.notereference p165-174.en_US
dc.contributor.guideShanmugam Aen_US
dc.publisher.placeChennaien_US
dc.publisher.universityAnna Universityen_US
dc.publisher.institutionFaculty of Science and Humanitiesen_US
dc.date.registeredn.d,en_US
dc.date.completed01/10/2014en_US
dc.date.awarded30/10/2014en_US
dc.format.dimensions23cm.en_US
dc.format.accompanyingmaterialNoneen_US
dc.source.universityUniversityen_US
dc.type.degreePh.D.en_US
Appears in Departments:Faculty of Science and Humanities

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File26.03 kBAdobe PDFView/Open
02_certificate.pdf592.09 kBAdobe PDFView/Open
03_abstract.pdf9.71 kBAdobe PDFView/Open
04_acknowledgement.pdf6.51 kBAdobe PDFView/Open
05_content.pdf43.9 kBAdobe PDFView/Open
06_chapter1.pdf976.25 kBAdobe PDFView/Open
07_chapter2.pdf131.14 kBAdobe PDFView/Open
08_chapter3.pdf513.6 kBAdobe PDFView/Open
09_chapter4.pdf890.99 kBAdobe PDFView/Open
10_chapter5.pdf774.99 kBAdobe PDFView/Open
11_chapter6.pdf12.42 kBAdobe PDFView/Open
12_chapter7.pdf5.96 kBAdobe PDFView/Open
13_reference.pdf371.92 kBAdobe PDFView/Open
14_publication.pdf30.16 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: