Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/39887
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialCertain algebraic procedures for Stability analysis of linear systems With complex coefficientsen_US
dc.date.accessioned2015-04-30T08:20:21Z-
dc.date.available2015-04-30T08:20:21Z-
dc.date.issued2015-04-30-
dc.identifier.urihttp://hdl.handle.net/10603/39887-
dc.description.abstractnewlineThe objective of this research work is to formulate certain criteria to newlineanalyse stability of complex polynomials that arise in engineering systems In newlinegeneral a characteristic equation with real coefficients is employed for newlinestability analysis of a linear time invariant systems But certain class of newlineapplications like relative and aperiodic stability analysis in linear timeinvariant newlinecontinuous systems involves complex coefficient polynomials In the newlinecase of certain time delay systems as well as two dimensional systems the newlineanalysis is done with complex polynomials The applications of complex newlinepolynomials also arise in case of nonlinear systems and systems with newlineinduction machines newlineIn this thesis two different algebraic schemes are formulated to handle newlinethe complex polynomials for analysing system stability In both the schemes newlinetermed as Sign Pair Criteria SPC I and SPC II Routh like table is developed newlineand the elements in the first column are utilized for stability analysis In the newlineproposed first scheme the first two rows are formed directly using complex newlinecoefficients while in the second scheme the real and imaginary parts of the newlinegiven complex polynomial are separated and the coefficients of real and newlineimaginary parts are entered in the first two rows of Routh like table newlineThese two sign pair criteria are applied to linear time invariant newlinecontinuous systems represented by complex polynomials having onedimension newlineas well as two dimensions for inferring stable and unstable newlinesituation including certain design problem newline newlineen_US
dc.format.extentxviii, 180p.en_US
dc.languageEnglishen_US
dc.relationp168-178.en_US
dc.rightsuniversityen_US
dc.titleCertain algebraic procedures for Stability analysis of linear systems With complex coefficientsen_US
dc.title.alternativeen_US
dc.creator.researcherSreekala Ken_US
dc.subject.keywordSign Pair Criteriaen_US
dc.description.notereference p168-178.en_US
dc.contributor.guideSivanandam S Nen_US
dc.publisher.placeChennaien_US
dc.publisher.universityAnna Universityen_US
dc.publisher.institutionFaculty of Electrical and Electronics Engineeringen_US
dc.date.registeredn.d,en_US
dc.date.completed01/02/2014en_US
dc.date.awarded30/02/2014en_US
dc.format.dimensions23cm.en_US
dc.format.accompanyingmaterialNoneen_US
dc.source.universityUniversityen_US
dc.type.degreePh.D.en_US
Appears in Departments:Faculty of Electrical and Electronics Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File26.93 kBAdobe PDFView/Open
02_certificate.pdf1.73 MBAdobe PDFView/Open
03_abstract.pdf20.73 kBAdobe PDFView/Open
04_acknowledgement.pdf20.97 kBAdobe PDFView/Open
05_content.pdf93.52 kBAdobe PDFView/Open
06_chapter1.pdf173.23 kBAdobe PDFView/Open
07_chapter2.pdf745.37 kBAdobe PDFView/Open
08_chapter3.pdf535.8 kBAdobe PDFView/Open
09_chapter4.pdf1.06 MBAdobe PDFView/Open
10_chapter5.pdf331.24 kBAdobe PDFView/Open
11_chapter6.pdf720.95 kBAdobe PDFView/Open
12_chapter7.pdf606.55 kBAdobe PDFView/Open
13_chapter8.pdf770.26 kBAdobe PDFView/Open
14_chapter9.pdf528.7 kBAdobe PDFView/Open
15_chapter10.pdf90.84 kBAdobe PDFView/Open
16_chapter11.pdf51.61 kBAdobe PDFView/Open
17_reference.pdf76.68 kBAdobe PDFView/Open
18_publication.pdf31.96 kBAdobe PDFView/Open
19_vitae.pdf29.11 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: