Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/39434
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialEfficient architectures for high Speed and low power vlsi Implementation of lifting discrete Wavelet transformen_US
dc.date.accessioned2015-04-22T06:17:04Z-
dc.date.available2015-04-22T06:17:04Z-
dc.date.issued2015-04-22-
dc.identifier.urihttp://hdl.handle.net/10603/39434-
dc.description.abstractThe Discrete Wavelet Transform DWT plays a major role in the newlinefields of signal analysis computer vision object recognition and image and newlinevideo compression standards The advantage of the DWT over other newlinetraditional transforms is that it performs the multi resolution analysis of newlinesignals with localization both in time and frequency The JPEG 2000 standard newlineadopts two methods to produce the wavelet transform The frequency domain newlinemethod uses convolution for implementing the filter banks and the lifting newlineschemes are based on the time spatial domain representation of the sub band newlinecoding of the given image coefficients newlineThe implementation of the DWT in real time image video newlineprocessing has some issues First the computational complexity of the newlinewavelet transform is several times higher and it has to process massive newlineamounts of data at high speeds Second the DWT needs extra memory for newlinestoring the intermediate computational results The use of the software newlineimplementation of the DWT provides flexibility for manipulation but it may newlinenot meet the timing constraints in certain applications The high cost of newlinemultipliers has practical limitations in the hardware implementation of the newlineDWT The Filter bank implementation of the DWT contains two FIR filters It newlinehas traditionally been implemented by convolution or the finite impulse newlineresponse FIR filter bank structures Such implementations require both a newlinelarge number of arithmetic computations and storage which are not desirable newlinefor either high speed or low power image video processing applications newline newlineen_US
dc.format.extentxx, 119p.en_US
dc.languageEnglishen_US
dc.relationp111-118.en_US
dc.rightsuniversityen_US
dc.titleEfficient architectures for high Speed and low power vlsi Implementation of lifting discrete Wavelet transformen_US
dc.title.alternativeen_US
dc.creator.researcherUsha bhanu Nen_US
dc.subject.keywordDiscrete Wavelet Transformen_US
dc.subject.keywordFilter bank structuresen_US
dc.subject.keywordFrequency domainen_US
dc.subject.keywordVideo processing applicationsen_US
dc.description.notereference p111-118.en_US
dc.contributor.guideChilambuchelvan Aen_US
dc.publisher.placeChennaien_US
dc.publisher.universityAnna Universityen_US
dc.publisher.institutionFaculty of Information and Communication Engineeringen_US
dc.date.registeredn.d,en_US
dc.date.completed01/06/2014en_US
dc.date.awarded30/06/2014en_US
dc.format.dimensions23cm.en_US
dc.format.accompanyingmaterialNoneen_US
dc.source.universityUniversityen_US
dc.type.degreePh.D.en_US
Appears in Departments:Faculty of Information and Communication Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File26.79 kBAdobe PDFView/Open
02_certificate.pdf1.37 MBAdobe PDFView/Open
03_abstract.pdf61 kBAdobe PDFView/Open
04_acknowledgement.pdf8.69 kBAdobe PDFView/Open
05_content.pdf41.5 kBAdobe PDFView/Open
06_chapter1.pdf521.78 kBAdobe PDFView/Open
07_chapter2.pdf46.64 kBAdobe PDFView/Open
08_chapter3.pdf331.53 kBAdobe PDFView/Open
09_chapter4.pdf268.17 kBAdobe PDFView/Open
10_chapter5.pdf419.52 kBAdobe PDFView/Open
11_chapter6.pdf589 kBAdobe PDFView/Open
12_chapter7.pdf135.94 kBAdobe PDFView/Open
13_chapter8.pdf12.33 kBAdobe PDFView/Open
14_reference.pdf245.38 kBAdobe PDFView/Open
15_publication.pdf14.61 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: