Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/39090
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialEnhanced digital image inpainting Models using discrete shearlet Transformen_US
dc.date.accessioned2015-04-16T09:11:02Z-
dc.date.available2015-04-16T09:11:02Z-
dc.date.issued2015-04-16-
dc.identifier.urihttp://hdl.handle.net/10603/39090-
dc.description.abstractDigital image inpainting is the technique of filling the missing newlineregions of an image by using information from surrounding area This newlinetechnique has wider applications in image restoration disocclusion and newlineimage video compression newlineThe objective of this thesis is to implement novel approach of newlineintroducing Discrete Shearlet Transform DST in digital image inpainting newlinemodels and applying them to the problem of text removal image newlinereconstruction and image video coding In this regard this thesis addresses newlinethree significant image inpainting models with error concealment newlineapplications newlineThe inpainting model is proposed by introducing DST and p newlineLaplacian operator in Total Variation model This model with 1 p 2 can newlinereduce the staircase effect by still keeping the sharp edges effectively The p newlineLaplacian operator diffuses in two directions and hence diffusion speed newlineincreases newlineThe second inpainting model is proposed with the idea of using newlineExpectation Maximization EM algorithm in a Bayesian framework with newlineshearlets The EM algorithm iteratively reconstructs the missing data and then newlinesolves the equation for the new estimates newline newlineen_US
dc.format.extentxx, 126p.en_US
dc.languageEnglishen_US
dc.relationp116-125.en_US
dc.rightsuniversityen_US
dc.titleEnhanced digital image inpainting Models using discrete shearlet Transformen_US
dc.title.alternativeen_US
dc.creator.researcherGomathi Ren_US
dc.subject.keywordBayesian frameworken_US
dc.subject.keywordDigital image inpaintingen_US
dc.subject.keywordDiscrete Shearlet Transformen_US
dc.subject.keywordExpectation Maximizationen_US
dc.description.notereference p116-125.en_US
dc.contributor.guideVincent antony kumar Aen_US
dc.publisher.placeChennaien_US
dc.publisher.universityAnna Universityen_US
dc.publisher.institutionFaculty of Information and Communication Engineeringen_US
dc.date.registeredn.d,en_US
dc.date.completed01/10/2014en_US
dc.date.awarded30/10/2014en_US
dc.format.dimensions23cm.en_US
dc.format.accompanyingmaterialNoneen_US
dc.source.universityUniversityen_US
dc.type.degreePh.D.en_US
Appears in Departments:Faculty of Information and Communication Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File57.06 kBAdobe PDFView/Open
02_certificate.pdf965.46 kBAdobe PDFView/Open
03_abstract.pdf10.54 kBAdobe PDFView/Open
04_acknowledgement.pdf342.8 kBAdobe PDFView/Open
05_content.pdf37.49 kBAdobe PDFView/Open
06_chapter1.pdf360.39 kBAdobe PDFView/Open
07_chapter2.pdf49.36 kBAdobe PDFView/Open
08_chapter3.pdf816.5 kBAdobe PDFView/Open
09_chapter4.pdf423.28 kBAdobe PDFView/Open
10_chapter5.pdf515.2 kBAdobe PDFView/Open
11_chapter6.pdf789.76 kBAdobe PDFView/Open
12_chapter7.pdf15.46 kBAdobe PDFView/Open
13_reference.pdf463.6 kBAdobe PDFView/Open
14_publication.pdf40.26 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: