Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/38989
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialDetection and removal of redundant And illegitimate data in data Repository an empirical analysisen_US
dc.date.accessioned2015-04-13T10:10:47Z-
dc.date.available2015-04-13T10:10:47Z-
dc.date.issued2015-04-13-
dc.identifier.urihttp://hdl.handle.net/10603/38989-
dc.description.abstractData cleansing is described as the sum of operations executed on newlineexisting data to eliminate anomalies and obtain a data collection being a newlineprecise and exclusive representation These data anomalies that contain errors discrepancies redundancies ambiguities and incompleteness hinder the newlineeffectiveness of analysis or data mining Decreasing the time and intricacies newlineof the mining process and improving the quality of datum present in the data newlinewarehouse are the important objectives of data cleansing With the intention newlineof this, the efficient technique is proposed capable of providing accurate data newlinerecords by removing the errors such as duplicate records near duplicate newlinerecords misspelling errors and illegal value errors which usually arise when newlinedata is warehoused from external sources In our proposed technique after the newlinepreprocessing steps Rabin s fingerprinting algorithm and Levenshtein newlinedistance is used for cleansing the dataset from duplicate records and nearduplicate newlinerecords respectively For correcting misspelling errors Levenshtein newlineedit distance method is utilized and the illegal value errors are identified using newlineRule Based method newline newlineen_US
dc.format.extentxiii, 141p.en_US
dc.languageEnglishen_US
dc.relationp133-140.en_US
dc.rightsuniversityen_US
dc.titleDetection and removal of redundant And illegitimate data in data Repository an empirical analysisen_US
dc.title.alternativeen_US
dc.creator.researcherSenthilkumar Pen_US
dc.subject.keywordData cleansingen_US
dc.subject.keywordLevenshteinen_US
dc.subject.keywordRabin s fingerprinting algorithmen_US
dc.description.notereference p133-140.en_US
dc.contributor.guideSuthanthira vanitha Nen_US
dc.publisher.placeChennaien_US
dc.publisher.universityAnna Universityen_US
dc.publisher.institutionFaculty of Information and Communication Engineeringen_US
dc.date.registeredn.d,en_US
dc.date.completed01/08/2014en_US
dc.date.awarded30/08/2014en_US
dc.format.dimensions23cm.en_US
dc.format.accompanyingmaterialNoneen_US
dc.source.universityUniversityen_US
dc.type.degreePh.D.en_US
Appears in Departments:Faculty of Information and Communication Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File31.61 kBAdobe PDFView/Open
02_certificate.pdf130.83 kBAdobe PDFView/Open
03_abstract.pdf60.81 kBAdobe PDFView/Open
04_acknowledgement.pdf58.29 kBAdobe PDFView/Open
05_content.pdf254.61 kBAdobe PDFView/Open
06_chapter1.pdf550.31 kBAdobe PDFView/Open
07_chapter2.pdf1.26 MBAdobe PDFView/Open
08_chapter3.pdf1.35 MBAdobe PDFView/Open
09_chapter4.pdf4.2 MBAdobe PDFView/Open
10_chapter5.pdf3.11 MBAdobe PDFView/Open
11_chapter6.pdf1.99 MBAdobe PDFView/Open
12_chapter7.pdf76.22 kBAdobe PDFView/Open
13_reference.pdf675.4 kBAdobe PDFView/Open
14_publication.pdf64.07 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: