Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/38951
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialInvestigation of efficient Bio inspired intelligent paradigms for Solving unique constraint Based optimization problemsen_US
dc.date.accessioned2015-04-10T13:13:50Z-
dc.date.available2015-04-10T13:13:50Z-
dc.date.issued2015-04-10-
dc.identifier.urihttp://hdl.handle.net/10603/38951-
dc.description.abstractOptimization is an interdisciplinary area providing solutions to newlineNonlinear stochastic combinatorial and multi objective problems With the newlineincreasing challenges of satisfying optimization goals of current applications newlinethere is a strong drive to improve the development of efficient optimizers Thus it newlineis important to identify suitable computationally intelligent algorithms for newlinesolving the challenges posed by optimization problems In this research four newlineunique optimization problems namely the Unit Commitment and Economic newlineLoad Dispatch UC ELD Job Shop Scheduling Problem JSSP Multi Depot newlineVehicle Routing Problem MDVRP and Digital Image Watermarking DIWM newlineare chosen to test and validate the performance of bio inspired intelligent newlinealgorithms The primary aim is to apply bio inspired heuristics to the problems newlineunder consideration and identify the most suitable algorithm in terms of optimal newlinesolution robustness and computational time newlineThe non convex and combinatorial nature of the UC ELD problems newlinerequires the application of heuristic algorithms to generate optimal schedules In newlinestudies reported so far the Unit Commitment and the Economic Load Dispatch newlineproblems are solved as separate problems In the addressed work the newlinecommitment and de commitment of generating units is obtained using a Genetic newlineAlgorithm GA and the optimal load distribution of the scheduled units is newlineobtained using a Fuzzy based Radial Basis Function Network FRBFN Surekha newlineand Sumathi July 2011 Enhanced Particle Swarm Optimization EPSO newlineDifferential Evolution with Opposition Based Learning newlineen_US
dc.format.extentxxxiii, 391p.en_US
dc.languageEnglishen_US
dc.relationp345-368en_US
dc.rightsuniversityen_US
dc.titleInvestigation of efficient Bio inspired intelligent paradigms for Solving unique constraint Based optimization problemsen_US
dc.title.alternativeen_US
dc.creator.researcherSurekha Pen_US
dc.subject.keywordEnhanced Particle Swarm Optimizationen_US
dc.subject.keywordFuzzy based Radial Basis Function Networken_US
dc.subject.keywordJob Shop Scheduling Problemen_US
dc.description.noteappendix p345-368, reference p369-390.en_US
dc.contributor.guideSumathi Sen_US
dc.publisher.placeChennaien_US
dc.publisher.universityAnna Universityen_US
dc.publisher.institutionFaculty of Electrical and Electronics Engineeringen_US
dc.date.registeredn.d,en_US
dc.date.completed01/08/2014en_US
dc.date.awarded30/08/2014en_US
dc.format.dimensions23cm.en_US
dc.format.accompanyingmaterialNoneen_US
dc.source.universityUniversityen_US
dc.type.degreePh.D.en_US
Appears in Departments:Faculty of Electrical and Electronics Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File39.11 kBAdobe PDFView/Open
02_certificate.pdf2.38 MBAdobe PDFView/Open
03_abstract.pdf21.99 kBAdobe PDFView/Open
04_acknowledgement.pdf792.08 kBAdobe PDFView/Open
05_content.pdf76.78 kBAdobe PDFView/Open
06_chapter1.pdf175.14 kBAdobe PDFView/Open
07_chapter2.pdf1.22 MBAdobe PDFView/Open
08_chapter3.pdf642.5 kBAdobe PDFView/Open
09_chapter4.pdf367.94 kBAdobe PDFView/Open
10_chapter5.pdf2.43 MBAdobe PDFView/Open
11_chapter6.pdf127.18 kBAdobe PDFView/Open
12_appendix.pdf302.64 kBAdobe PDFView/Open
13_reference.pdf109.36 kBAdobe PDFView/Open
14_publication.pdf24.87 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: