Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/38881
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialAdaptive invariant content based Image retrieval using semantic Learningen_US
dc.date.accessioned2015-04-09T07:43:26Z-
dc.date.available2015-04-09T07:43:26Z-
dc.date.issued2015-04-09-
dc.identifier.urihttp://hdl.handle.net/10603/38881-
dc.description.abstractWith the extensive growth of image databases in the digital world newlineefficient image retrieval has gained much importance Content Based Image newlineRetrieval CBIR is the retrieval of relevant images from the image database newlinebased on the visual content of the image which consists of the low level newlinevisual features such as color texture and shape The performance of most of newlinethe CBIR systems is limited by the low level visual features since they newlinecannot adequately express the high level human perception This is the newline semantic gap problem To reduce the semantic gap semantic knowledge newlineincorporation into the content based image retrieval system has become very newlineimportant This is known as semantic content based image retrieval SCBIR newlineMany recent research works are going on in the field of SCBIR newlineThis research work aims to develop a semantic learning scheme newlinefor predicting the semantic concept of the query image The support vector newlinemachine SVM a supervised machine learning algorithm is used in the newlineconstruction of the semantic learning scheme The SVM binary decision tree newline SVM BDT is constructed using the semantic templates of each of the newlinesemantic concept Using the low level features of the query image the newlineSVM BDT predicts the semantic concept of the query image newline newlineen_US
dc.format.extentxxii, 177p.en_US
dc.languageEnglishen_US
dc.relationp162-176.en_US
dc.rightsuniversityen_US
dc.titleAdaptive invariant content based Image retrieval using semantic Learningen_US
dc.title.alternativeen_US
dc.creator.researcherFelci rajam Ien_US
dc.subject.keywordContent Based Image Retrievalen_US
dc.subject.keywordSemantic content based image retrievalen_US
dc.subject.keywordSupport vector machineen_US
dc.description.notereferencec p162-176.en_US
dc.contributor.guideValli Sen_US
dc.publisher.placeChennaien_US
dc.publisher.universityAnna Universityen_US
dc.publisher.institutionFaculty of Information and Communication Engineeringen_US
dc.date.registeredn.d,en_US
dc.date.completed01/05/2014en_US
dc.date.awarded30/05/2014en_US
dc.format.dimensions23cm.en_US
dc.format.accompanyingmaterialNoneen_US
dc.source.universityUniversityen_US
dc.type.degreePh.D.en_US
Appears in Departments:Faculty of Information and Communication Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File41.39 kBAdobe PDFView/Open
02_certificate.pdf810.98 kBAdobe PDFView/Open
03_abstract.pdf10.44 kBAdobe PDFView/Open
04_acknowledgement.pdf5.82 kBAdobe PDFView/Open
05_content.pdf63.1 kBAdobe PDFView/Open
06_chapter1.pdf16.07 kBAdobe PDFView/Open
07_chapter2.pdf438.86 kBAdobe PDFView/Open
08_chapter3.pdf323.19 kBAdobe PDFView/Open
09_chapter4.pdf312.16 kBAdobe PDFView/Open
10_chapter5.pdf991.16 kBAdobe PDFView/Open
11_chapter6.pdf1.09 MBAdobe PDFView/Open
12_chapter7.pdf8.69 kBAdobe PDFView/Open
13_reference.pdf42.8 kBAdobe PDFView/Open
14_publication.pdf5.54 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: