Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/371967
Full metadata record
DC FieldValueLanguage
dc.coverage.spatial
dc.date.accessioned2022-04-05T11:58:08Z-
dc.date.available2022-04-05T11:58:08Z-
dc.identifier.urihttp://hdl.handle.net/10603/371967-
dc.description.abstractSignature images are not rich in texture however they have much vital geometrical information. The technique presented in this thesis harnesses the geometrical features of a signature image like center isolated points connected components etc and with the power of Artificial Neural Network classifier newlineclassifies the signature image based on their geometrical features. In todays era newlinedeep learning is the emerging field in case of feature extraction object detection classification etc. So rather than depending on the hand engineered features newlineor geometrical features we should adapt the techniques which will automatically newlineextract the relevant features. We have proposed a convolutional neural network based language independent shallow architecture sCNN Shallow Convolutional Neural Network for signature verification. The proposed architecture is very simple but extremely efficient in terms of accuracy.
dc.format.extentxxi, 155p.
dc.languageEnglish
dc.relation
dc.rightsuniversity
dc.titleOffline signature verification
dc.title.alternative
dc.creator.researcherJain, Anamika
dc.subject.keywordComputer Science
dc.subject.keywordComputer Science Software Engineering
dc.subject.keywordEngineering and Technology
dc.description.note
dc.contributor.guideSingh, Satish Kumar and Singh, Krishna Pratap
dc.publisher.placeAllahabad
dc.publisher.universityIndian Institute of Information Technology, Allahabad
dc.publisher.institutionInformation Technology
dc.date.registered
dc.date.completed2021
dc.date.awarded2021
dc.format.dimensions
dc.format.accompanyingmaterialNone
dc.source.universityUniversity
dc.type.degreePh.D.
Appears in Departments:Information Technology

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File79.16 kBAdobe PDFView/Open
02_declaration.pdf222.53 kBAdobe PDFView/Open
03_certificate.pdf302.3 kBAdobe PDFView/Open
04_acknowledgement.pdf44.12 kBAdobe PDFView/Open
05_content.pdf62.82 kBAdobe PDFView/Open
06_list of graph and table.pdf58.62 kBAdobe PDFView/Open
07_chapter 1.pdf689.9 kBAdobe PDFView/Open
08_chapter 2.pdf311.61 kBAdobe PDFView/Open
09_chapter 3.pdf1.64 MBAdobe PDFView/Open
10_chapter 4.pdf2.98 MBAdobe PDFView/Open
11_chapter 5.pdf1.55 MBAdobe PDFView/Open
12_chapter 6.pdf463.66 kBAdobe PDFView/Open
13_bibliography.pdf105.79 kBAdobe PDFView/Open
14_annexure.pdf1.63 MBAdobe PDFView/Open
80_recommendation.pdf47.56 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: