Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/367054
Full metadata record
DC FieldValueLanguage
dc.coverage.spatial
dc.date.accessioned2022-03-08T05:26:00Z-
dc.date.available2022-03-08T05:26:00Z-
dc.identifier.urihttp://hdl.handle.net/10603/367054-
dc.description.abstractThe ever challenging brain abnormalities diagnosis by medical professionals based on the data from MRI and CT scans needs deeper and finer information to strengthen diagnosis and subsequent treatment. So for on this track several researchers have contributed to give possible information for diagnostic however there are certain areas where the accuracy needed to be improved for diagnosis and subsequent effective treatments. The identified challenges needing focused attention enhancing extraction, segmentation accuracy consideration of majority of features of the images and giving a support of single platform for multi abnormalities diagnosis. newlineThe proposed work undertaken in this research improves segmentation accuracy taking in combination symmetry and textures features followed by categorized recognition of brain images. The analysis of categorized data implementing data mining and machine learning algorithms leads classification at better level and detection accuracy at higher level. The suggested track of processes sequences and normally supported under different frameworks and hence to be collected in a single window from different frameworks methodology output. This issues are resolved in the proposed framework integrating scattered processes in a sequence and utilizing the output of one into the next in sequence has justified the targeted accuracies and enhancement levels. The implementation of proposed work could achieved improved segmentation accuracy evaluated using segmentation performance evaluators viz PRI as 0.9857, VOI as 0.022, GCE as 0.01424. Also, the classifier accuracy were evaluated by performance measures viz Accuracy, Specificity, Sensitivity, F-measure, Precision and Recall which depicted as the research effectively demonstrates various brain hemorrhages as Epidural hemorrhage (EDH), subdural hemorrhage (SDH), subarachnoid hemorrhage (SAH), Intracerebral hemorrhage (ICH) and Intraventricular hemorrhage (IVH) by its dimension, shape and area in the brain which can use for accurately detecting
dc.format.extent
dc.languageEnglish
dc.relation
dc.rightsuniversity
dc.titleLocating Brain Abnormality and Extracting Features from MRI CT Images using Segmentation and Classification Techniques
dc.title.alternative
dc.creator.researcherSnehkinj Rupal
dc.subject.keywordComputer Science
dc.subject.keywordComputer Science Interdisciplinary Applications
dc.subject.keywordEngineering and Technology
dc.description.noteAbstract
dc.contributor.guideJani Ashish N.
dc.publisher.placeAnand
dc.publisher.universityCharotar University of Science and Technology
dc.publisher.institutionFaculty of Computer Science and Applications
dc.date.registered2014
dc.date.completed2018
dc.date.awarded2018
dc.format.dimensions
dc.format.accompanyingmaterialDVD
dc.source.universityUniversity
dc.type.degreePh.D.
Appears in Departments:Faculty of Computer Science & Applications

Files in This Item:
File Description SizeFormat 
14drmca003-fullthesis.pdfAttached File4.69 MBAdobe PDFView/Open
80_recommendation.pdf163.5 kBAdobe PDFView/Open
file1 � title page.pdf91.92 kBAdobe PDFView/Open
file2-certificate page.pdf48.5 kBAdobe PDFView/Open
file3-preliminary pages.pdf241.22 kBAdobe PDFView/Open
file4� chapter1.pdf387.51 kBAdobe PDFView/Open
file5� chapter2.pdf789.47 kBAdobe PDFView/Open
file6� chapter3.pdf328.47 kBAdobe PDFView/Open
file7� chapter4.pdf3.07 MBAdobe PDFView/Open
file8� chapter5.pdf250.54 kBAdobe PDFView/Open
file9� chapter6.pdf197.95 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: