Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/345747
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialAn enhancement of cloud based sentiment analysis using svm based lexicon dictionary and adaptive resource scheduling
dc.date.accessioned2021-10-26T07:16:07Z-
dc.date.available2021-10-26T07:16:07Z-
dc.identifier.urihttp://hdl.handle.net/10603/345747-
dc.description.abstractSociety is increasingly producing vast amount of data that may be either structured or unstructured. In recent years there has been a high demand for storing data in domains like finance, education, science and technology. Handling of huge and unstructured data (Big Data) may be a challenge that is a key to competitive advantage. Cloud computing and big data is considered as fastest moving technologies that are interlinked with one another to provide a solution for decision making problems. With the invention of new data mining techniques and machine learning algorithms analyzing big data is very critical. Big Data analysis is however a more challenging process than locating, preprocessing, identifying, understanding, and citing data. This thesis fills the research Gap observed towards a classification of a collection of unstructured or semi structured information with dynamic schema. Deployment on cloud computing infrastructures and indexing of information on the deep web is addressed. Visualization tool for cloud to handle large scale and complex data is addressed. Sentiment classification based on cloud customer feedback is developed by using the SVM with Lexicon based dictionary. newline
dc.format.extentxv, 120p
dc.languageEnglish
dc.relationp.110-119
dc.rightsuniversity
dc.titleAn enhancement of cloud based sentiment analysis using svm based lexicon dictionary and adaptive resource scheduling
dc.title.alternative
dc.creator.researcherRadha, S
dc.subject.keywordEngineering and Technology
dc.subject.keywordComputer Science
dc.subject.keywordComputer Science Information Systems
dc.subject.keywordenhancement
dc.subject.keywordsentiment
dc.description.note
dc.contributor.guideNelson kennedy babu, C
dc.publisher.placeChennai
dc.publisher.universityAnna University
dc.publisher.institutionFaculty of Information and Communication Engineering
dc.date.registered
dc.date.completed2020
dc.date.awarded2020
dc.format.dimensions21cm
dc.format.accompanyingmaterialNone
dc.source.universityUniversity
dc.type.degreePh.D.
Appears in Departments:Faculty of Information and Communication Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File27.2 kBAdobe PDFView/Open
02_certificates.pdf101 kBAdobe PDFView/Open
03_vivaproceedings.pdf123.41 kBAdobe PDFView/Open
04_bonafidecertificate.pdf102.25 kBAdobe PDFView/Open
05_abstracts.pdf14.78 kBAdobe PDFView/Open
06_acknowledgements.pdf99.41 kBAdobe PDFView/Open
07_contents.pdf45.68 kBAdobe PDFView/Open
08_listoftables.pdf9.4 kBAdobe PDFView/Open
09_listoffigures.pdf51.79 kBAdobe PDFView/Open
10_listofabbreviations.pdf18.74 kBAdobe PDFView/Open
11_chapter1.pdf454.18 kBAdobe PDFView/Open
12_chapter2.pdf222.83 kBAdobe PDFView/Open
13_chapter3.pdf924.34 kBAdobe PDFView/Open
14_chapter4.pdf320.57 kBAdobe PDFView/Open
15_chapter5.pdf450.81 kBAdobe PDFView/Open
16_conclusion.pdf21.15 kBAdobe PDFView/Open
17_references.pdf167.96 kBAdobe PDFView/Open
18_listofpublications.pdf129.15 kBAdobe PDFView/Open
80_recommendation.pdf50.86 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: