Please use this identifier to cite or link to this item:
http://hdl.handle.net/10603/345433
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.coverage.spatial | Certain investigations on pedestrian detection using multiresolution analysis and deep learning | |
dc.date.accessioned | 2021-10-25T05:01:26Z | - |
dc.date.available | 2021-10-25T05:01:26Z | - |
dc.identifier.uri | http://hdl.handle.net/10603/345433 | - |
dc.description.abstract | In computer vision, pedestrian detection is a rapidly growing researcharea due to the importance of real time applications such as video surveillancesystem, person identification, automated driver assistance and automotivesafety. Due to the vulnerability of pedestrians in heavy traffic, especially inurban areas, the detection of pedestrians becomes essential for road safety.The existing techniques of Deformable Part Model, extended deep model,RealBoost method and Deep Neural Networks have been employed indifferent scenarios for pedestrian detection. To improve the accuracy, reducethe false positive rate, memory requirement and time consumption (trainingand response time) over the existing methods, three novel techniques namely Multiresolution Morlet Decomposition based Iterative Learning DeformablePart (MMD-ILDP) model, Soft sign Gaussian Recurrent Deep Neural Network(SGRDNN) technique and Multi-Resolution Deformable Part Based Fully Recurrent Deep Neural Learning (MDP-FRDNL) have been proposed in this research work. newline | |
dc.format.extent | xxvi,167p | |
dc.language | English | |
dc.relation | p.157-166 | |
dc.rights | university | |
dc.title | Certain investigations on pedestrian detection using multiresolution analysis and deep learning | |
dc.title.alternative | ||
dc.creator.researcher | Govardhan, S D | |
dc.subject.keyword | Engineering and Technology | |
dc.subject.keyword | Computer Science | |
dc.subject.keyword | Computer Science Interdisciplinary Applications | |
dc.subject.keyword | Real time applications | |
dc.subject.keyword | Pedestrian detection | |
dc.subject.keyword | Deep learning | |
dc.description.note | ||
dc.contributor.guide | Vasuki, A | |
dc.publisher.place | Chennai | |
dc.publisher.university | Anna University | |
dc.publisher.institution | Faculty of Information and Communication Engineering | |
dc.date.registered | n.d. | |
dc.date.completed | 2020 | |
dc.date.awarded | 2020 | |
dc.format.dimensions | 21cm | |
dc.format.accompanyingmaterial | None | |
dc.source.university | University | |
dc.type.degree | Ph.D. | |
Appears in Departments: | Faculty of Information and Communication Engineering |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
01_title.pdf | Attached File | 198.2 kB | Adobe PDF | View/Open |
02_certificates.pdf | 168.74 kB | Adobe PDF | View/Open | |
03_vivaproceedings.pdf | 429.4 kB | Adobe PDF | View/Open | |
04_bonafidecertificate.pdf | 247 kB | Adobe PDF | View/Open | |
05_abstracts.pdf | 16.83 kB | Adobe PDF | View/Open | |
06_acknowledgements.pdf | 284.25 kB | Adobe PDF | View/Open | |
07_contents.pdf | 307.07 kB | Adobe PDF | View/Open | |
08_listoftables.pdf | 124.54 kB | Adobe PDF | View/Open | |
09_listoffigures.pdf | 300.47 kB | Adobe PDF | View/Open | |
10_listofabbreviations.pdf | 187.54 kB | Adobe PDF | View/Open | |
11_chapter1.pdf | 248.78 kB | Adobe PDF | View/Open | |
12_chapter2.pdf | 196.87 kB | Adobe PDF | View/Open | |
13_chapter3.pdf | 410.27 kB | Adobe PDF | View/Open | |
14_chapter4.pdf | 427.19 kB | Adobe PDF | View/Open | |
15_chapter5.pdf | 520.42 kB | Adobe PDF | View/Open | |
16_chapter6.pdf | 580.03 kB | Adobe PDF | View/Open | |
17_conclusion.pdf | 21.04 kB | Adobe PDF | View/Open | |
18_references.pdf | 181.05 kB | Adobe PDF | View/Open | |
19_listofpublications.pdf | 125.1 kB | Adobe PDF | View/Open | |
80_recommendation.pdf | 64.77 kB | Adobe PDF | View/Open |
Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).
Altmetric Badge: