Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/344398
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialFacial expression recognition using convolutional neural network based approach for 3D facial images
dc.date.accessioned2021-10-13T05:56:35Z-
dc.date.available2021-10-13T05:56:35Z-
dc.identifier.urihttp://hdl.handle.net/10603/344398-
dc.description.abstractFacial expression is defined as the activity of recognizing the internal newlinefeeling or emotional state. It is one of the powerful tools for effective newlinecommunication between persons. They are the cues that control our newlineinteractions with other persons in our vicinity. Thus, they play an important newlinerole in building successful relationships. Facial Expression Recognition newlinesystem attempts to extract features from facial images, classify the newlineexpressions by analyzing the changes in facial features. This system plays a newlinevital role in improving human computer interaction. Most of the works in facial expression recognition depends heavily on the prominent facial landmarks and a reference facial model. Locating the most prominent facial landmarks become tedious because of the complexity of facial musculature and it also needs manual intervention for better accuracy. Model based approaches need to establish a reference model and newlinecomplex functions for mapping which takes intense computation time. So, newlinethis research work provides a new dimension to deal with the above issues by newlineproposing a Convolutional Neural Network based approach that does not rely newlineon the landmarks or a reference model. newline newline
dc.format.extentxvii, 125p.
dc.languageEnglish
dc.relationp.116-124
dc.rightsuniversity
dc.titleFacial expression recognition using convolutional neural network based approach for 3D facial images
dc.title.alternative
dc.creator.researcherRamya R
dc.subject.keywordEngineering and Technology
dc.subject.keywordComputer Science
dc.subject.keywordComputer Science Information Systems
dc.subject.keywordFacial Expression Recognition
dc.subject.keyword3D facial images
dc.subject.keywordFacial Images
dc.subject.keywordConvolutional Neural Network
dc.description.note
dc.contributor.guideMala K and Selva Nidhyananthan S
dc.publisher.placeChennai
dc.publisher.universityAnna University
dc.publisher.institutionFaculty of Information and Communication Engineering
dc.date.registered
dc.date.completed2020
dc.date.awarded2020
dc.format.dimensions21cm
dc.format.accompanyingmaterialNone
dc.source.universityUniversity
dc.type.degreePh.D.
Appears in Departments:Faculty of Information and Communication Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File91.87 kBAdobe PDFView/Open
02_certificates.pdf553.79 kBAdobe PDFView/Open
03_abstracts.pdf6.68 kBAdobe PDFView/Open
04_acknowledgements.pdf338.91 kBAdobe PDFView/Open
05_contents.pdf14.97 kBAdobe PDFView/Open
06_listoftables.pdf57.61 kBAdobe PDFView/Open
07_listoffigures.pdf102.38 kBAdobe PDFView/Open
08_listofabbreviations.pdf141.49 kBAdobe PDFView/Open
09_chapter1.pdf212 kBAdobe PDFView/Open
10_chapter2.pdf351.7 kBAdobe PDFView/Open
11_chapter3.pdf312.41 kBAdobe PDFView/Open
12_chapter4.pdf746.22 kBAdobe PDFView/Open
13_chapter5.pdf1.18 MBAdobe PDFView/Open
14_chapter6.pdf73.61 kBAdobe PDFView/Open
15_conclusion.pdf73.61 kBAdobe PDFView/Open
16_references.pdf131.62 kBAdobe PDFView/Open
17_listofpublications.pdf52.21 kBAdobe PDFView/Open
80_recommendation.pdf140.13 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: