Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/343265
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialText segmentation and recognition in natural scene images using GLCM and FOS feature descriptor
dc.date.accessioned2021-10-06T06:38:49Z-
dc.date.available2021-10-06T06:38:49Z-
dc.identifier.urihttp://hdl.handle.net/10603/343265-
dc.description.abstractIn the real world, Text plays major role in the scenery images and newlinevideo frames, understanding that text carries important information in day to newlineday life. Gradually, the number of users of moveable camera, video recorders newlineand camera phone are increasing and this direct to maximum development in newlinemultimedia information. Researchers were found that human pay more newlineattention to the text rather than the object in the images. The main focus of the newlineresearcher is to find the best way of finding and extracting the different types newlineof text in scenery images or in video frames having complex backgrounds. One newlinecan say that it is extending the application of optical character recognition newlinesystem into broader area and also service people for additional understanding newlinethe machine of the text detection and recognition. Actually text detection is the newlinearea in which one tries to find the text area in the scenery images and video newlineframes by finding precise borders of text lines through various approaches. newlineThis proposed work plays a major role in detecting the text region to newlinehelp the aged persons when travel long distance through bus, to see the number newlineboard of the bus. For image acquisition, get a publically available database newlineimages. MSRA-TD500 database is a text image database. The proposed system newlineuses YUV color conversion technique to improve the quality of images, avoid newlinethe unnecessary distortions in the image and then Y channel is converted to newlinegray scale image using gray scale converter, which contains the intensity values newlineranges from 0 to 255. newline newline
dc.format.extentxviii, 166p.
dc.languageEnglish
dc.relationp.156-165
dc.rightsuniversity
dc.titleText segmentation and recognition in natural scene images using GLCM and FOS feature descriptor
dc.title.alternative
dc.creator.researcherSurem Samuel S R
dc.subject.keywordEngineering and Technology
dc.subject.keywordEngineering
dc.subject.keywordEngineering Electrical and Electronic
dc.subject.keywordText segmentation
dc.subject.keywordText recognition
dc.subject.keywordFirst Order Statistical
dc.subject.keywordGray Level Co Occurrence Matrix
dc.description.note
dc.contributor.guideSeldev Christopher C
dc.publisher.placeChennai
dc.publisher.universityAnna University
dc.publisher.institutionFaculty of Electrical Engineering
dc.date.registered
dc.date.completed2019
dc.date.awarded2019
dc.format.dimensions21cm
dc.format.accompanyingmaterialNone
dc.source.universityUniversity
dc.type.degreePh.D.
Appears in Departments:Faculty of Electrical Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File244.51 kBAdobe PDFView/Open
02_certificates.pdf592.04 kBAdobe PDFView/Open
03_abstracts.pdf187.31 kBAdobe PDFView/Open
04_acknowledgements.pdf746.87 kBAdobe PDFView/Open
05_contents.pdf404.4 kBAdobe PDFView/Open
06_listoftables.pdf30.44 kBAdobe PDFView/Open
07_listoffigures.pdf696.84 kBAdobe PDFView/Open
08_listofabbreviations.pdf217.96 kBAdobe PDFView/Open
09_chapter1.pdf1.46 MBAdobe PDFView/Open
10_chapter2.pdf406.49 kBAdobe PDFView/Open
11_chapter3.pdf333.62 kBAdobe PDFView/Open
12_chapter4.pdf3.09 MBAdobe PDFView/Open
13_chapter5.pdf793.67 kBAdobe PDFView/Open
14_chapter6.pdf911.35 kBAdobe PDFView/Open
15_conclusion.pdf200.73 kBAdobe PDFView/Open
16_references.pdf1.77 MBAdobe PDFView/Open
17_listofpublications.pdf251.04 kBAdobe PDFView/Open
80_recommendation.pdf119.55 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: