Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/342271
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialA study of privacy preservation and classification approaches in data mining applications
dc.date.accessioned2021-09-28T03:39:17Z-
dc.date.available2021-09-28T03:39:17Z-
dc.identifier.urihttp://hdl.handle.net/10603/342271-
dc.description.abstractPrivacy preserving data mining is a field to protect the privacy of newlinesensitive data and also provides a valid data mining results. The data newlineperturbation techniques are the well-liked models which perform the data newlinetransformation process before publishing data to the data miners. There is a newlinenecessity to prevent diversity attack by adequately correlating perturbation newlineacross copies at different trust levels in an organization. To achieve high newlineprivacy guarantee and zero- loss of accuracy, various perturbation techniques newlineare used for different classifiers. By removing irrelevant and redundant newlinefeatures from the dataset, the performance of the classifiers can be improved. newlineIn the initial stage of research, a Hybrid Gaussian Noise Distribution newline(HGND) perturbation method is addressed for maintaining sensitive data newlineamong multiple privacy level. The perturbed data generation process is done newlinein three different ways such as parallel generation, sequential generation and newlineon-demand generation for all the additive, multiplicative and hybrid newlineperturbation methods. A data owner can produce perturbed copies through on demand newlinebasis with respect to privacy levels. Higher privacy level data miner newlinecan access only less perturbed data. We proved that our model produces best newlineresults against diversity attacks, in which attacker may access the collection of newlinethe perturbed copies. But our model prevents them from jointly reconstructing newlinethe original data more accurately newline newline
dc.format.extentxxi, 126p.
dc.languageEnglish
dc.relationp.114-125
dc.rightsuniversity
dc.titleA study of privacy preservation and classification approaches in data mining applications
dc.title.alternative
dc.creator.researcherChidambaram S
dc.subject.keywordEngineering and Technology
dc.subject.keywordComputer Science
dc.subject.keywordComputer Science Information Systems
dc.subject.keywordData Mining Applications
dc.subject.keywordData Mining
dc.subject.keywordPrivacy Preservation
dc.subject.keywordPerturbed Data
dc.description.note
dc.contributor.guideSrinivasagan K G
dc.publisher.placeChennai
dc.publisher.universityAnna University
dc.publisher.institutionFaculty of Information and Communication Engineering
dc.date.registered
dc.date.completed2020
dc.date.awarded2020
dc.format.dimensions21cm
dc.format.accompanyingmaterialNone
dc.source.universityUniversity
dc.type.degreePh.D.
Appears in Departments:Faculty of Information and Communication Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File42.33 kBAdobe PDFView/Open
02_certificates.pdf1.12 MBAdobe PDFView/Open
03_abstracts.pdf9.05 kBAdobe PDFView/Open
04_acknowledgements.pdf474.86 kBAdobe PDFView/Open
05_contents.pdf93.35 kBAdobe PDFView/Open
06_listoftables.pdf85.93 kBAdobe PDFView/Open
07_listoffigures.pdf7.86 kBAdobe PDFView/Open
08_listofabbreviations.pdf176.12 kBAdobe PDFView/Open
09_chapter1.pdf367.43 kBAdobe PDFView/Open
10_chapter2.pdf138.95 kBAdobe PDFView/Open
11_chapter3.pdf460.01 kBAdobe PDFView/Open
12_chapter4.pdf692 kBAdobe PDFView/Open
13_chapter5.pdf719.57 kBAdobe PDFView/Open
14_conclusion.pdf27.89 kBAdobe PDFView/Open
15_references.pdf228.61 kBAdobe PDFView/Open
16_listofpublications.pdf121.45 kBAdobe PDFView/Open
80_recommendation.pdf126.82 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: