Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/333376
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialComputer Science and Applications - Image Processing
dc.date.accessioned2021-07-26T08:03:30Z-
dc.date.available2021-07-26T08:03:30Z-
dc.identifier.urihttp://hdl.handle.net/10603/333376-
dc.description.abstractThe proposed research work involves interpretation of color satellite images obtained from Landsat and Bhuvan databases. Two datasets are created from these databases consists of 100 images each. The digital information extracted from the Red, Green, Blue and Near Infrared bands of these digital images is used for further processing. Landsat images are downloaded as .jpg or .tiff formats where as Bhuvan images are available in the form of band information in .tiff format. These bands are separately collected and Red, Green 2 and Blue bands are combined to form the database images. These images are selected with three macroclasses containing seven class categories. The macroclasses include land, vegetation and water. The seven class categories include residential land, commercial land, grasslands, evergreen forest, mixed forest, sediments and clear water. The algorithms in proposed research are developed and implemented using programming language in MATLAB (MATrix LABoratory) along with some built-in library functions and Open Source Library for Support Vector Machine, LIBSVM. MATLAB is used for image analysis, graph plotting functions, programming and classification with Neural Networks. LIBSVM is used for carrying out the classification task using Support Vector Machine (SVM). Microsoft Excel and Snipping Tool are used for analysis and pictorial representations. newline
dc.format.extentxiii, 215p.
dc.languageEnglish
dc.relation-
dc.rightsuniversity
dc.titleInterpretation of satellite images using computational intelligence
dc.title.alternative
dc.creator.researcherChib, Sunita
dc.subject.keywordComputational Intelligence
dc.subject.keywordImage Interpretation
dc.subject.keywordLandsat Satellite Images
dc.subject.keywordNeural Network
dc.subject.keywordSupport Vector Machine
dc.description.noteBibliography 175-186p. Appendices 187-215p.
dc.contributor.guideM. Syamala Devi
dc.publisher.placeChandigarh
dc.publisher.universityPanjab University
dc.publisher.institutionDepartment of Computer Science and Application
dc.date.registered2012
dc.date.completed2020
dc.date.awarded2020
dc.format.dimensions-
dc.format.accompanyingmaterialCD
dc.source.universityUniversity
dc.type.degreePh.D.
Appears in Departments:Department of Computer Science and Application

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File46.41 kBAdobe PDFView/Open
02_certificate.pdf475.51 kBAdobe PDFView/Open
03_acknowledgement.pdf95.22 kBAdobe PDFView/Open
04_abstract.pdf54.2 kBAdobe PDFView/Open
05_abbreviations.pdf101.88 kBAdobe PDFView/Open
06_list of figures.pdf100.91 kBAdobe PDFView/Open
07_list of contents.pdf175.63 kBAdobe PDFView/Open
08_list of tables.pdf95.4 kBAdobe PDFView/Open
09_chapter 1.pdf527.97 kBAdobe PDFView/Open
10_chapter 2.pdf522.42 kBAdobe PDFView/Open
11_chapter 3.pdf1.12 MBAdobe PDFView/Open
12_chapter 4.pdf517.6 kBAdobe PDFView/Open
13_chapter 5.pdf1.05 MBAdobe PDFView/Open
14_chapter 6.pdf1.41 MBAdobe PDFView/Open
15_chapter 7.pdf99.99 kBAdobe PDFView/Open
16_references.pdf261.4 kBAdobe PDFView/Open
17_appendices.pdf986.7 kBAdobe PDFView/Open
18_research papers.pdf899.58 kBAdobe PDFView/Open
80_recommendation.pdf99.99 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: