Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/331727
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialOn game coloring of graphs
dc.date.accessioned2021-07-14T10:54:34Z-
dc.date.available2021-07-14T10:54:34Z-
dc.identifier.urihttp://hdl.handle.net/10603/331727-
dc.description.abstractThis thesis primarily deals with graph coloring game, graph edgecoloring game and oriented graph coloring game. Let G be a finite graph andX be a set of n colors. The graph coloring game on G is defined to be a gameplayed by two players Alice and Bob with Alice start playing the game first.They take turns alternatively to color the vertices of G using colors from X suchthat no two adjacent vertices are colored with the same color. Alice wins the newlinegame if it is possible to color all the vertices of G with colors from X. Bob winsif at any point of the game, there is a vertex which cannot be colored with colorsfrom X. We always assume that both the players play optimally. The gamechromatic number of G, denoted by cg(G), is the minimum number of colorsneeded in the color set X for which Alice has a strategy to win.In Chapter 2, we have determined the game chromatic number of the direct product of (i) two stars K1;n and K1;m, (ii) two complete bipartite graphsKm;n and Ka;b, (iii) path Pn and star K1;m, (iv) path P2 and cycle Cn and (v) pathP2 and wheelWn. In Chapter 3, we discuss the game chromatic number of thelexicographic product of graphs. Given any two simple graphs G and H, we gavean upper bound for the game chromatic number of the lexicographic productof G and H. Also, we have determined the game chromatic number of thelexicographic product of (i) path P2 with path Pn, (ii) path P2 with star K1;n and(iii) path P2 with wheelWn. newline newline
dc.format.extentxi,123 p.
dc.languageEnglish
dc.relationp.120-122
dc.rightsuniversity
dc.titleOn game coloring of graphs
dc.title.alternative
dc.creator.researcherAlagammai, R
dc.subject.keywordPhysical Sciences
dc.subject.keywordMathematics
dc.subject.keywordMathematics Applied
dc.description.note
dc.contributor.guideVijayalakshmi, V
dc.publisher.placeChennai
dc.publisher.universityAnna University
dc.publisher.institutionFaculty of Science and Humanities
dc.date.registered
dc.date.completed2020
dc.date.awarded2020
dc.format.dimensions21cm
dc.format.accompanyingmaterialNone
dc.source.universityUniversity
dc.type.degreePh.D.
Appears in Departments:Faculty of Science and Humanities

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File105.47 kBAdobe PDFView/Open
02_certificates.pdf149.62 kBAdobe PDFView/Open
03_vivaproceedings.pdf239.41 kBAdobe PDFView/Open
04_bonafidecertificate.pdf183.23 kBAdobe PDFView/Open
05_abstracts.pdf160.71 kBAdobe PDFView/Open
06_acknowledgements.pdf189.19 kBAdobe PDFView/Open
07_contents.pdf156.79 kBAdobe PDFView/Open
08_listoftables.pdf172.12 kBAdobe PDFView/Open
09_listoffigures.pdf165.99 kBAdobe PDFView/Open
10_listofabbreviations.pdf138.92 kBAdobe PDFView/Open
11_chapter1.pdf209.87 kBAdobe PDFView/Open
12_chapter2.pdf270.64 kBAdobe PDFView/Open
13_chapter3.pdf256.51 kBAdobe PDFView/Open
14_chapter4.pdf397.51 kBAdobe PDFView/Open
15_chapter5.pdf237.31 kBAdobe PDFView/Open
16_chapter6.pdf288.05 kBAdobe PDFView/Open
17_chapter7.pdf209.91 kBAdobe PDFView/Open
18_chapter8.pdf355.72 kBAdobe PDFView/Open
19_conclusion.pdf176.5 kBAdobe PDFView/Open
20_references.pdf153.93 kBAdobe PDFView/Open
21_listofpublications.pdf122.34 kBAdobe PDFView/Open
80_recommendation.pdf45.34 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: