Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/33157
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialDetection and avoidance of phishingWebpagesen_US
dc.date.accessioned2015-01-20T07:12:49Z-
dc.date.available2015-01-20T07:12:49Z-
dc.date.issued2015-01-20-
dc.identifier.urihttp://hdl.handle.net/10603/33157-
dc.description.abstractPhishing is a webbased criminal activity Phishing sites lure naive newlineonline users to reveal their sensitive information into fake websites by newlinecamouflaging themselves as trustworthy entities Due to the short lifespan of newlinephishing websites and the rapid advancement of phishing techniques the newlineexisting antiphishing solutions are either unable to deal with the emerging newlinechanges or incapable of playing an effective role against this attack newlineIn this thesis the characteristics of legitimate and phishing newlinewebpages were investigated in depth and based on this analysis proposed newlinemethods are intended to mitigate the impact of phishing attack The first newlinemethod proposes heuristics to extract fifteen features from suspicious newlinewebpages These heuristic results were fed as an input to a trained machine newlinelearning algorithm to detect phishing sites Before applying heuristics to the newlinewebpages two preliminary screening modules are used These modules help newlinethe system to reduce superfluous computation and the rate of false positives newlinewithout compromising on the false negatives By using all of these modules newlinethis method was able to classify webpages with over 99 of precision with newlineless than 1 of false positive rate newlineAs technology advances the phishing techniques being used are newlinealso getting advanced and hence there is demand for new upgraded and robust newlineantiphishing techniques along with the existing methods newline newlineen_US
dc.format.extentxix, 184p.en_US
dc.languageEnglishen_US
dc.relationp174-183.en_US
dc.rightsuniversityen_US
dc.titleDetection and avoidance of phishingWebpagesen_US
dc.title.alternativeen_US
dc.creator.researcherGowtham Ren_US
dc.subject.keywordFalse positive rateen_US
dc.description.noteappendix p155-173, reference p174-183.en_US
dc.contributor.guideIlangokrishnamurthien_US
dc.publisher.placeChennaien_US
dc.publisher.universityAnna Universityen_US
dc.publisher.institutionFaculty of Information and Communication Engineeringen_US
dc.date.registeredn.d,en_US
dc.date.completed01/10/2014en_US
dc.date.awarded30/10/2014en_US
dc.format.dimensions23cm.en_US
dc.format.accompanyingmaterialNoneen_US
dc.source.universityUniversityen_US
dc.type.degreePh.D.en_US
Appears in Departments:Faculty of Information and Communication Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File50.23 kBAdobe PDFView/Open
02_certificate.pdf1.14 MBAdobe PDFView/Open
03_abstract.pdf22.9 kBAdobe PDFView/Open
04_acknowledgement.pdf20.15 kBAdobe PDFView/Open
05_content.pdf56.55 kBAdobe PDFView/Open
06_chapter1.pdf163.21 kBAdobe PDFView/Open
07_chapter2.pdf164.76 kBAdobe PDFView/Open
08_chapter3.pdf384.57 kBAdobe PDFView/Open
09_chapter4.pdf408.64 kBAdobe PDFView/Open
10_chapter5.pdf247.26 kBAdobe PDFView/Open
11_chapter6.pdf145.05 kBAdobe PDFView/Open
12_chapter7.pdf36.09 kBAdobe PDFView/Open
13_appendix.pdf440.93 kBAdobe PDFView/Open
14_reference.pdf56.19 kBAdobe PDFView/Open
15_publication.pdf36.21 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: