Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/33120
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialEnhancing the performance of Classification algorithms through Dataset tuning feature selection and Exception handlingen_US
dc.date.accessioned2015-01-20T05:38:48Z-
dc.date.available2015-01-20T05:38:48Z-
dc.date.issued2015-01-20-
dc.identifier.urihttp://hdl.handle.net/10603/33120-
dc.description.abstractThis thesis presents a spectrum of novel solutions for enhancing the newlineperformance of classification tasks in Knowledge Discovery Process by newlinetaking into account redundant and inconsistent data irrelevant and redundant newlinefeatures and exceptions while performing classification tasks equal newlineprobability and information gain that can arise often in real world datasets newlineThese characteristics are very often neglected by state of the art classification newlineAlgorithms The main focus of this thesis is Knowledge Discovery in newlineDatabases KDD Four different domains related to KDD namely Dataset newlineTuning Feature Selection Handling Exceptions in Classification algorithms newlineand Classification of Threatening E mail have been investigated newlineI n real world datasets lots of redundant and conflicting data exist newlinethat affect the performance of the classification algorithms They have to be newlineremoved to increase the efficiency and the accuracy of the classifiers Dataset newlinetuning is a pre processing method used to fine tune the tuples in a dataset for newlinenoise elimination Dataset tuning is done to remove redundant data and to newlinecorrect the conflicting data newlineFeature selection is a fundamental problem in data mining to select newlinerelevant features and cast away irrelevant and redundant features based on newlinesome evaluation criteria It is well known that correlated and irrelevant newlinefeatures may degrade the performance of the classification algorithms In this newlinethesis feature selection algorithms such as Bayes Feature Selector Class newlineAssociation Rule Information Gain Feature Selector and Bayes Theorem newlineInformation Gain Feature Selector are proposed newline newlineen_US
dc.format.extentxxiv, 254p.en_US
dc.languageEnglishen_US
dc.relationp237-250.en_US
dc.rightsuniversityen_US
dc.titleEnhancing the performance of Classification algorithms through Dataset tuning feature selection and Exception handlingen_US
dc.title.alternativeen_US
dc.creator.researcherAppavu alias balamurugan Sen_US
dc.subject.keywordBayes Theoremen_US
dc.subject.keywordKnowledge Discovery in Databasesen_US
dc.subject.keywordKnowledge Discovery Processen_US
dc.description.notereference p237-250.en_US
dc.contributor.guideRajaram Ren_US
dc.publisher.placeChennaien_US
dc.publisher.universityAnna Universityen_US
dc.publisher.institutionFaculty of Information and Communication Engineeringen_US
dc.date.registeredn.d.en_US
dc.date.completed01/08/2009en_US
dc.date.awarded30/08/2009en_US
dc.format.dimensions23cmen_US
dc.format.accompanyingmaterialNoneen_US
dc.source.universityUniversityen_US
dc.type.degreePh.D.en_US
Appears in Departments:Faculty of Information and Communication Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File28.06 kBAdobe PDFView/Open
02_certificate.pdf19.93 kBAdobe PDFView/Open
03_abstract.pdf24.56 kBAdobe PDFView/Open
04_acknowledgement.pdf19.35 kBAdobe PDFView/Open
05_content.pdf69.78 kBAdobe PDFView/Open
06_chapter1.pdf76.54 kBAdobe PDFView/Open
07_chapter2.pdf108.18 kBAdobe PDFView/Open
08_chapter3.pdf56.85 kBAdobe PDFView/Open
09_chapter4.pdf777.75 kBAdobe PDFView/Open
10_chapter5.pdf3.62 MBAdobe PDFView/Open
11_chapter6.pdf33.32 kBAdobe PDFView/Open
12_reference.pdf64.74 kBAdobe PDFView/Open
13_publication.pdf29.91 kBAdobe PDFView/Open
14_vitae.pdf18.01 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: